Logo Kérwá
 

Nonionic surfactants can modify the thermal stability of globular and membrane proteins interfering with the thermal proteome profiling principles to identify protein targets

dc.creatorBerlin, Emmanuel
dc.creatorLizano Fallas, Verónica
dc.creatorCarrasco del Amor, Ana
dc.creatorFresnedo, Olatz
dc.creatorCristobal, Susana
dc.date.accessioned2024-03-20T14:26:39Z
dc.date.available2024-03-20T14:26:39Z
dc.date.issued2023
dc.description.abstractThe membrane proteins are essential targets for understanding cellular function. The unbiased identification of membrane protein targets is still the bottleneck for a system-level understanding of cellular response to stimuli or perturbations. It has been suggested to enrich the soluble proteome with membrane proteins by introducing nonionic surfactants in the solubilization solution. This strategy aimed to simultaneously identify the globular and membrane protein targets by thermal proteome profiling principles. However, the thermal shift assay would surpass the cloud point temperature from the nonionic surfactants frequently utilized for membrane protein solubilization. It is expected that around the cloud point temperature, the surfactant micelles would suffer structural modifications altering protein solubility. Here, we show that the presence of nonionic surfactants can alter protein thermal stability from a mixed, globular, and membrane proteome. In the presence of surfactant micelles, the changes in protein solubility analyzed after the thermal shift assay was affected by the thermally dependent modification of the micellar size and its interaction with proteins. We demonstrate that the introduction of nonionic surfactants for the solubilization of membrane proteins is not compatible with the principles of target identification by thermal proteome profiling methodologies. Our results lead to exploring thermally independent strategies for membrane protein solubilization to assure confident membrane protein target identification. The proteome-wide thermal shift methods have already shown their capability to elucidate mechanisms of action from pharma, biomedicine, analytical chemistry, or toxicology, and finding strategies, free from surfactants, to identify membrane protein targets would be the next challenge.es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro en Investigación en Contaminación Ambiental (CICA)es_ES
dc.identifier.citationhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c04500es_ES
dc.identifier.doi10.1021/acs.analchem.2c04500
dc.identifier.issn0003-2700
dc.identifier.issn1520-6882
dc.identifier.urihttps://hdl.handle.net/10669/91104
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.sourceAnalytical Chemistry, vol.95 (8), pp.4033−4042.es_ES
dc.subjectPROTEINSes_ES
dc.subjectSURFACTANTSes_ES
dc.subjectTHERMAL ENERGYes_ES
dc.subjectCHEMISTRYes_ES
dc.titleNonionic surfactants can modify the thermal stability of globular and membrane proteins interfering with the thermal proteome profiling principles to identify protein targetses_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nonionic Surfactants can Modify the Thermal Stability of Globular and Membrane Proteins Interfering with the Thermal Proteome Profiling Principles to Identify Protein Targets - ac2c04500.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections