Logo Kérwá
 

Learning the prediction error for improving an analytical-based prediction (object-model) system for manipulation tasks

dc.creatorSolís Villalta, Orlando
dc.creatorRuiz Ugalde, Federico
dc.date.accessioned2021-10-31T15:19:57Z
dc.date.available2021-10-31T15:19:57Z
dc.date.issued2018
dc.description.abstractOne of the main tasks in robotics today, is to bring robots closer to humans in everyday situations. This requires the robot to understand how its environment (objects, people, conditions) behaves. One method that tries to connect the environment to the robot is called object model. This proposed system (object model) is able to give the robot an understanding of the physics of the environment. Object models have been used to give robots the ability to understand and control object behavior. This information helps robots to be more capable for skilled manipulation tasks, by predicting how the object will react to external stimulus. The object model used as case of study in this paper, uses an analytical representation for describing object behavior. This analytical representation has the advantage of using meaningful object properties and quickly allowing the robot to manipulate the object without doing a lot of trial and error repetitions. A challenge of this approach is that it can be very difficult to derive a mathematical/mechanical model of the object behavior. Therefore, this model, in most cases, will not describe all the peculiarities and details of object behavior. As a result, predictions are good but not perfect. This paper proposes a method to improve the prediction performance of such system, by learning the error of the analytical model and using this to correct the original prediction. Our results show that such a system is able to improve the prediction performance of the system. A quantitative evaluation using cross validation is provided to demonstrate the ability of our system to reduce the error exhibited by the prediction system (object model).es
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Instituto Investigaciones en Ingeniería (INII)es
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes
dc.description.procedenceUCR::Vicerrectoría de Investigación::Sistema de Estudios de Posgrado::Ingeniería::Maestría Académica en Ingeniería Eléctricaes
dc.description.sponsorshipUniversidad de Costa Rica/[]/UCR/Costa Ricaes
dc.identifier.doihttps://doi.org/10.1109/IWOBI.2018.8464211
dc.identifier.isbn978-1-5386-7506-9
dc.identifier.urihttps://hdl.handle.net/10669/84920
dc.language.isoeng
dc.source2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp.1-7es
dc.subjectRobotes
dc.subjectCognitive roboticses
dc.subjectManipulationes
dc.subjectObject model systemes
dc.subjectPushing objectses
dc.subjectError predictiones
dc.subjectMachine learninges
dc.titleLearning the prediction error for improving an analytical-based prediction (object-model) system for manipulation taskses
dc.typecomunicación de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Learning_the_Prediction_Error_for_Improving_an_Analytical-Based_Prediction_Object-Model_System_for_Manipulation_Tasks.pdf
Size:
632.14 KB
Format:
Adobe Portable Document Format
Description:
Versión final

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: