Logo Kérwá
 

An empirical evaluation of NASA-MDP data sets using a genetic defect-proneness prediction framework

dc.creatorMurillo Morera, Juan
dc.creatorQuesada López, Christian Ulises
dc.creatorCastro Herrera, Carlos
dc.creatorJenkins Coronas, Marcelo
dc.date.accessioned2018-01-17T21:51:02Z
dc.date.available2018-01-17T21:51:02Z
dc.date.issued2016-11-09
dc.description.abstractIn software engineering, software quality is an important research area. Automated generation of learning schemes plays an important role and represents an efficient way to detect defects in software projects, thus avoiding high costs and long delivery times. This study carries out an empirical evaluation to validate two versions with different levels of noise of NASAMDP data sets. The main objective of this paper is to determine the stability of our framework. In all, 864 learning schemes were studied (8 data preprocessors x 6 attribute selectors x 18 learning algorithms). In line with statistical tests, our framework reported stable results between the analyzed versions. Results reported that evaluation and prediction phases were similar. Furthermore, the performance of the phases of evaluation and prediction between versions of data sets were stable. This means that the differences between versions did not affect the performance of our frameworkes_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informáticaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[834-B5-A18]/UCR/Costa Ricaes_ES
dc.description.sponsorshipNational University of Costa Rica /[]/UNA/Costa Ricaes_ES
dc.description.sponsorshipMinistry of Science, Technology and Telecommunications/[]/MICITT/Costa Ricaes_ES
dc.identifier.citationhttp://ieeexplore.ieee.org/document/7942359/
dc.identifier.codproyecto834-B5-A18
dc.identifier.doi10.1109/CONCAPAN.2016.7942359
dc.identifier.isbn978-1-4673-9578-6
dc.identifier.isbn978-1-4673-9579-3
dc.identifier.urihttps://hdl.handle.net/10669/73872
dc.language.isoen_USes_ES
dc.rightsacceso abierto
dc.sourceCentral American and Panama Convention (CONCAPAN XXXVI), 2016 IEEE 36th. San José, Costa Rica:IEEEes_ES
dc.subjectPrediction modelses_ES
dc.subjectLearning schemeses_ES
dc.subjectSoftware metricses_ES
dc.subjectSoftware metricses_ES
dc.subjectStatistical analysises_ES
dc.subjectEmpirical procedurees_ES
dc.titleAn empirical evaluation of NASA-MDP data sets using a genetic defect-proneness prediction frameworkes_ES
dc.typeartículo original

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07942359.pdf
Size:
470.02 KB
Format:
Adobe Portable Document Format
Description:
Versión final

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.38 KB
Format:
Item-specific license agreed upon to submission
Description: