Logo Kérwá
 

Motor bearing failures detection by using vibration data

dc.creatorNúñez Mata, Óscar Fernando
dc.creatorRodríguez Rodríguez, Jose Ignacio
dc.creatorGómez Ramírez, Gustavo Adolfo
dc.date.accessioned2025-07-10T15:39:24Z
dc.date.issued2022-12-29
dc.description.abstractThe use of methodologies for condition monitoring of rotating machines has been growing to reduce unplanned downtime and to increase the reliability of the industrial processes. The companies must select a correct maintenance strategy to follow the evolution of rotating machines. Condition monitoring is the collection of data related to the health status of the machine and it has been widely studied so far. Different methodologies have been developed to identify specific behaviors in the condition of induction motors. This paper proposes a methodology for bearing failure detection by using vibrations data, based on the frequency spectrum applied to induction motors. This methodology allows the use of vibration data obtained from motor bearings to establish their condition and therefore determine the type of damage to the bearing. The effectiveness of the proposed methodology is validated using a data set obtained from NASA (National Aeronautics and Space Administration). The results showed that this type of approach is very useful for analyzing bearings and in this way creating maintenance routes based on the condition of the electric machines.
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctrica
dc.description.sponsorshipUniversidad de Costa Rica/[322-C1467]/UCR/Costa Rica
dc.identifier.codproyecto322-C1467
dc.identifier.doihttps://doi.org/10.1109/CONCAPAN48024.2022.9997595
dc.identifier.isbn978-1-7281-6716-9
dc.identifier.isbn978-1-7281-6715-2
dc.identifier.urihttps://hdl.handle.net/10669/102461
dc.language.isoeng
dc.rightsacceso embargado
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source2022 IEEE 40th Central America and Panama Convention (CONCAPAN). Institute of Electrical and Electronics Engineers
dc.subjectAC motors
dc.subjectball bearings
dc.subjectcondition monitoring
dc.subjectfailure analysis
dc.subjectvibrations
dc.titleMotor bearing failures detection by using vibration data
dc.typecomunicación de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Motor_bearing_failures_detection_by_using_vibration_data.pdf
Size:
590.17 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: