Logo Kérwá
 

Data mining and machine learning techniques for bank customers segmentation: A systematic mapping study

dc.creatorMonge Guzmán, Cruz Maricel
dc.creatorQuesada López, Christian Ulises
dc.creatorMartínez Porras, Alexandra
dc.creatorJenkins Coronas, Marcelo
dc.date.accessioned2025-05-30T20:22:31Z
dc.date.issued2020-08-25
dc.description.abstractData mining and machine learning techniques analyze and extract useful information from data sets in order to solve problems in different areas. For the banking sector, knowing the characteristics of customers entails a business advantage since more personalized products and services can be offered. The goal of this study is to identify and characterize data mining and machine learning techniques used for bank customer segmentation, their support tools, together with evalua- tion metrics and datasets. We performed a systematic literature mapping of 87 primary studies published between 2005 and 2019. We found that decision trees and linear predictors were the most used data mining and machine learning paradigms in bank customer segmentation. From the 41 studies that reported support tools, Weka and Matlab were the two most commonly cited. Regarding the evaluation metrics and datasets, accuracy was the most frequently used metric, whereas the UCI Machine Learning repository from the University of California was the most used dataset. In summary, several data mining and machine learning techniques have been applied to the problem of customer segmentation, with clear tendencies regarding the techniques, tools, metrics and datasets.
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informática
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Centro de Investigaciones en Tecnologías de Información y Comunicación (CITIC)
dc.identifier.doihttps://doi.org/10.1007/978-3-030-55187-2_48
dc.identifier.isbn978-3-030-55186-5
dc.identifier.isbn978-3-030-55187-2
dc.identifier.urihttps://hdl.handle.net/10669/102181
dc.language.isoeng
dc.rightsacceso embargado
dc.sourceProceedings of SAI Intelligent Systems Conference (pp. 666-684). Intelligent Systems and Applications
dc.subjectdata mining
dc.subjectmachine learning techniques
dc.subjectproblem solving
dc.subjectcustomer segmentation
dc.titleData mining and machine learning techniques for bank customers segmentation: A systematic mapping study
dc.typecomunicación de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
maricel_published.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: