Hopf algebras in noncommutative geometry

dc.creatorVárilly Boyle, Joseph C.
dc.date.accessioned2023-04-12T19:04:14Z
dc.date.available2023-04-12T19:04:14Z
dc.date.issued2003
dc.description.abstractWe give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.identifier.citationhttps://www.worldscientific.com/doi/10.1142/9789812705068_0001es_ES
dc.identifier.doi10.1142/9789812705068_0001
dc.identifier.urihttps://hdl.handle.net/10669/88493
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.sourceGeometric and Topological Methods for Quantum Field Theory (pp. 1-85).Singapore: World Scientific.es_ES
dc.subjectGEOMETRYes_ES
dc.subjectALGEBRAes_ES
dc.titleHopf algebras in noncommutative geometryes_ES
dc.typecapítulo de libroes_ES

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Calypso.pdf
Tamaño:
501.86 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones