Hopf algebras in noncommutative geometry
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2023-04-12T19:04:14Z | |
dc.date.available | 2023-04-12T19:04:14Z | |
dc.date.issued | 2003 | |
dc.description.abstract | We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.identifier.citation | https://www.worldscientific.com/doi/10.1142/9789812705068_0001 | es_ES |
dc.identifier.doi | 10.1142/9789812705068_0001 | |
dc.identifier.uri | https://hdl.handle.net/10669/88493 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Geometric and Topological Methods for Quantum Field Theory (pp. 1-85).Singapore: World Scientific. | es_ES |
dc.subject | GEOMETRY | es_ES |
dc.subject | ALGEBRA | es_ES |
dc.title | Hopf algebras in noncommutative geometry | es_ES |
dc.type | capítulo de libro | es_ES |