Logo Kérwá
 

2D SLAM Algorithms Characterization, Calibration, and Comparison Considering Pose Error, Map Accuracy, CPU Usage, and Memory Usage

dc.creatorTrejos Vargas, Kevin Francisco
dc.creatorRincón Riveros, Laura Camila
dc.creatorBolaños Torres, Miguel Eduardo
dc.creatorFallas Pizarro, José Ariel
dc.creatorMarín Paniagua, Leonardo José
dc.date.accessioned2022-05-16T20:03:00Z
dc.date.available2022-05-16T20:03:00Z
dc.date.issued2022
dc.description.abstractThe present work proposes a method to characterize, calibrate, and compare, any 2D SLAM algorithm, providing strong statistical evidence, based on descriptive and inferential statistics to bring confidence levels about overall behavior of the algorithms and their comparisons. This work focuses on characterize, calibrate, and compare Cartographer, Gmapping, HECTOR-SLAM, KARTO-SLAM, and RTAB-Map SLAM algorithms, there were four metrics in place, these are pose error, map accuracy, CPU usage, and memory usage, from these four metrics, to characterize them, Plackett-Burman and factorial experiments were performed, and enhancement after characterization and calibration was granted by using hypothesis tests besides central limit theorem.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[322-B8-298]/UCR/Costa Ricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[322-C0-611]/UCR/Costa Ricaes_ES
dc.identifier.codproyecto322-B8-298
dc.identifier.codproyecto322-C0-611
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/10669/86591
dc.language.isoenges_ES
dc.sourceSensors, vol.22, pp.1-37.es_ES
dc.subject2D SLAMes_ES
dc.subjectSLAM calibrationes_ES
dc.subjectROSes_ES
dc.subjectGAZEBOes_ES
dc.subjectCartographeres_ES
dc.subjectGmappinges_ES
dc.subjectHECTOR-SLAMes_ES
dc.subjectKARTO-SLAMes_ES
dc.subjectRTAB-Mapes_ES
dc.subjectAPEes_ES
dc.subjectKnn-Searches_ES
dc.subjectPlackett-Burmanes_ES
dc.title2D SLAM Algorithms Characterization, Calibration, and Comparison Considering Pose Error, Map Accuracy, CPU Usage, and Memory Usagees_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sensors_Article_accepted.pdf
Size:
8.9 MB
Format:
Adobe Portable Document Format
Description:
Versión postprint

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: