Logo Kérwá
 

In-situ estimation of li-ion battery state-of-health using on-board electrical measurement for electromobility applications

dc.creatorGarcía Bustos, Jorge Eduardo
dc.creatorBrito Schiele, Benjamín
dc.creatorBaldo, Leonardo
dc.creatorMasserano, Bruno
dc.creatorJaramillo Montoya, Francisco
dc.creatorTroncoso Kurtovic, Diego
dc.creatorOrchard, Marcos E
dc.creatorPérez Mora, Aramis
dc.creatorSilva, Jorge F.
dc.date.accessioned2025-11-11T22:01:33Z
dc.date.issued2025
dc.descriptionEsta es una versión preprint por lo que no se le ha asignado un identificador permanente, ni el número y volumen en el que será publicado.
dc.description.abstractThe well-balanced combination of high energy density and competitive cycle performance has established lithium-ion batteries as the technology of choice for Electric Vehicles (EV) energy storage. Nevertheless, battery degradation continues to pose challenges to EV range, safety, and long-term reliability, making accurate estimation of their State of Health (SoH) crucial for efficient battery management, safety, and improved longevity. This paper addresses a compelling research question: the development of a real-time, non-invasive, and efficient methodology for estimating lithium-ion battery SoH without battery removal, relying solely on voltage and current data. Our approach integrates the fitting abilities of MaximumLikelihood Estimation (MLE) with the dynamic uncertainty propagation of Bayesian Filtering to provide accurate and robust online SoH estimation. By reconstructing the open-circuit voltage curve from real-time data, the MLE estimates battery capacity during discharge cycles, while Bayesian Filtering refines these estimates, accounting for uncertainties and variations. The methodology is validated using an available dataset from Stanford University, demonstrating its effectiveness in tracking battery degradation under driving profiles. The results indicate that the approach can reliably estimate the battery SoH with a mean absolute error around 1%, highlighting its potential for scalable applications in different types of lithium-ion cells and battery configurations in EVs.
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctrica
dc.description.sponsorshipAgencia Nacional de Investigación y Desarrollo/[1250036]/ANID/Chile
dc.description.sponsorshipAgencia Nacional de Investigación y Desarrollo/[11231148]/ANID/Chile
dc.description.sponsorshipAgencia Nacional de Investigación y Desarrollo/[AFB240002]/ANID/Chile
dc.description.sponsorshipAgencia Nacional de Investigación y Desarrollo/[2022-21221213]/ANID/Chile
dc.description.sponsorshipPiano di Ripresa e Resilienza NextGeneration EU/[DM352/2022]/PNRR-NGEU/Italia
dc.description.sponsorshipUniversidad de Costa Rica/[322-C1467]/UCR/Costa Rica
dc.identifier.codproyecto322-C1467
dc.identifier.urihttps://hdl.handle.net/10669/103175
dc.language.isospa
dc.rightsacceso abierto
dc.sourceBatteries, 2025
dc.subjectElectric Vehicles
dc.subjectLithium-Ion Batteries
dc.subjectBattery Degradation
dc.subjectMaximum Likelihood Estimation
dc.subjectParticle Filtering
dc.titleIn-situ estimation of li-ion battery state-of-health using on-board electrical measurement for electromobility applications
dc.typeartículo preliminar

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SOHmeter_MDPI_version.pdf
Size:
531.45 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: