Logo Kérwá
 

On summability of distributions and spectral geometry

dc.creatorEstrada Navas, Ricardo
dc.creatorGracia Bondía, José M.
dc.creatorVárilly Boyle, Joseph C.
dc.date.accessioned2022-11-29T14:24:07Z
dc.date.available2022-11-29T14:24:07Z
dc.date.issued1998-01
dc.description.abstractModulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.description.sponsorshipUniversidad de Costa Ricaes_ES
dc.identifier.citationhttps://link.springer.com/article/10.1007/s002200050266es_ES
dc.identifier.doi10.1007/s002200050266
dc.identifier.issn1432-0916
dc.identifier.urihttps://hdl.handle.net/10669/87799
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.sourceCommunications in Mathematical Physics, 191(1), p. 219-248.es_ES
dc.subjectteoría Cesàro de distribucioneses_ES
dc.subjectdesarrollos asintóticoses_ES
dc.subjectgeometría no conmutativaes_ES
dc.subjectGEOMETRÍAes_ES
dc.subjectMATEMÁTICASes_ES
dc.titleOn summability of distributions and spectral geometryes_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Odysseus.pdf
Size:
295.75 KB
Format:
Adobe Portable Document Format
Description:
versión preprint

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections