On summability of distributions and spectral geometry
dc.creator | Estrada Navas, Ricardo | |
dc.creator | Gracia Bondía, José M. | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2022-11-29T14:24:07Z | |
dc.date.available | 2022-11-29T14:24:07Z | |
dc.date.issued | 1998-01 | |
dc.description.abstract | Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.description.sponsorship | Universidad de Costa Rica | es_ES |
dc.identifier.citation | https://link.springer.com/article/10.1007/s002200050266 | es_ES |
dc.identifier.doi | 10.1007/s002200050266 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.uri | https://hdl.handle.net/10669/87799 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Communications in Mathematical Physics, 191(1), p. 219-248. | es_ES |
dc.subject | teoría Cesàro de distribuciones | es_ES |
dc.subject | desarrollos asintóticos | es_ES |
dc.subject | geometría no conmutativa | es_ES |
dc.subject | GEOMETRÍA | es_ES |
dc.subject | MATEMÁTICAS | es_ES |
dc.title | On summability of distributions and spectral geometry | es_ES |
dc.type | artículo original | es_ES |