On summability of distributions and spectral geometry
Loading...
Files
Date
Authors
Estrada Navas, Ricardo
Gracia Bondía, José M.
Várilly Boyle, Joseph C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.
Description
Keywords
teoría Cesàro de distribuciones, desarrollos asintóticos, geometría no conmutativa, GEOMETRÍA, MATEMÁTICAS
Citation
https://link.springer.com/article/10.1007/s002200050266