Logo Kérwá
 

On summability of distributions and spectral geometry

Loading...
Thumbnail Image

Authors

Estrada Navas, Ricardo
Gracia Bondía, José M.
Várilly Boyle, Joseph C.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.

Description

Keywords

teoría Cesàro de distribuciones, desarrollos asintóticos, geometría no conmutativa, GEOMETRÍA, MATEMÁTICAS

Citation

https://link.springer.com/article/10.1007/s002200050266

Collections

Endorsement

Review

Supplemented By

Referenced By