Logo Kérwá
 

Pre-training Long Short-term Memory neural networks for efficient regression in artificial speech postfiltering

dc.creatorCoto Jiménez, Marvin
dc.date.accessioned2022-03-25T20:04:54Z
dc.date.available2022-03-25T20:04:54Z
dc.date.issued2018
dc.description.abstractSeveral attempts to enhance statistical parametric speech synthesis have contemplated deep-learning-based postfilters, which learn to perform a mapping of the synthetic speech parameters to the natural ones, reducing the gap between them. In this paper, we introduce a new pre-training approach for neural networks, applied in LSTM-based postfilters for speech synthesis, with the objective of enhancing the quality of the synthesized speech in a more efficient manner. Our approach begins with an auto-regressive training of one LSTM network, whose is used as an initialization for postfilters based on a denoising autoencoder architecture. We show the advantages of this initialization on a set of multi-stream postfilters, which encompass a collection of denoising autoencoders for the set of MFCC and fundamental frequency parameters of the artificial voice. Results show that the initialization succeeds in lowering the training time of the LSTM networks and achieves better results in enhancing the statistical parametric speech in most cases, when compared to the common random-initialized approach of the networks.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes_ES
dc.identifier.citationhttps://ieeexplore.ieee.org/document/8464204es_ES
dc.identifier.doihttps://doi.org/10.1109/IWOBI.2018.8464204
dc.identifier.isbn978-1-5386-7506-9
dc.identifier.urihttps://hdl.handle.net/10669/86291
dc.language.isoenges_ES
dc.sourceIEEE International Work Conference on Bioinspired Intelligence (IWOBI). San Carlos, Costa Rica. 18-20 de julio de 2018es_ES
dc.subjectDeep learninges_ES
dc.subjectDenoising autoencoderses_ES
dc.subjectLong short-term memory (LSTM)es_ES
dc.subjectMachine learninges_ES
dc.subjectSignal processinges_ES
dc.subjectSpeech synthesises_ES
dc.titlePre-training Long Short-term Memory neural networks for efficient regression in artificial speech postfilteringes_ES
dc.typecomunicación de congresoes_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PreTraining.pdf
Size:
730.73 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: