A Comparative Study on Denoising Algorithms for Footsteps Sounds as Biometric in Noisy Environments
dc.creator | Caravaca Mora, Ronald | |
dc.creator | Brenes Jiménez, Carlos | |
dc.creator | Coto Jiménez, Marvin | |
dc.date.accessioned | 2022-08-17T17:35:35Z | |
dc.date.available | 2022-08-17T17:35:35Z | |
dc.date.issued | 2022-08-03 | |
dc.description.abstract | Biometrics is the automated identification of a person based on distinctive characteristics, such as fingerprints, face, voice, or the sound of footsteps. This last characteristic has significant challenges considering the background noise present in any real-life application, where microphones would record footsteps sounds and different types of noise. For this reason, it is crucial to consider not only the capacity of classification algorithms for recognizing a person using foostetps sounds, but also at least one stage of denoising algorithms that can reduce the background sounds before the classification. In this paper we study the possibilities of a two-stage approach for this problem: a denoising stage followed by a classification process. The work focuses on discovering the proper strategy for applying combinations of both stages for specific noise types and levels. Results vary according to the type and level of noise, e.g., for White noise at signal-to-noise ratio level, accuracy can increase from 0.96 to 1.00 by applying deep learning based-filters, but the same option does not benefit the cases of signals with low level natural noises, where Wiener filtering can increase accuracy from 0.6 to 0.77 at the highest level of noise. The results represent a baseline for developing real-life implementations of footstep biometrics. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctrica | es_ES |
dc.description.sponsorship | Universidad de Costa Rica/322–B9-105/UCR/Costa Rica | es_ES |
dc.identifier.citation | https://www.mdpi.com/2079-3197/10/8/133 | es_ES |
dc.identifier.codproyecto | 322-B9-105 | |
dc.identifier.doi | 10.3390/computation10080133 | |
dc.identifier.issn | 2079-3197 | |
dc.identifier.uri | https://hdl.handle.net/10669/87186 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Computation; Vol. 10 Núm. 8: 2022 | es_ES |
dc.subject | BIOMETRICS | es_ES |
dc.subject | CLASSIFICATION SYSTEMS | es_ES |
dc.subject | Filtering | es_ES |
dc.subject | Footsteps | es_ES |
dc.subject | NOISE | es_ES |
dc.title | A Comparative Study on Denoising Algorithms for Footsteps Sounds as Biometric in Noisy Environments | es_ES |
dc.type | artículo original | es_ES |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- computation-10-00133.pdf
- Tamaño:
- 1.78 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo principal
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: