Logo Kérwá
 

Improving automatic speech recognition containing additive noise using deep denoising autoencoders of lstm networks

dc.creatorCoto Jiménez, Marvin
dc.creatorGoddard Close, John
dc.creatorMartínez Licona, Fabiola
dc.date.accessioned2022-03-28T19:45:54Z
dc.date.available2022-03-28T19:45:54Z
dc.date.issued2016
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 9811).es
dc.description.abstractAutomatic speech recognition systems (ASR) suffer from performance degradation under noisy conditions. Recent work, using deep neural networks to denoise spectral input features for robust ASR, have proved to be successful. In particular, Long Short-Term Memory (LSTM) autoencoders have outperformed other state of the art denoising systems when applied to the mfcc’s of a speech signal. In this paper we also consider denoising LSTM autoencoders (DLSTMA), but instead use three different DLSTMAs and apply each to the mfcc’s, fundamental frequency, and energy features, respectively. Results are given using several kinds of additive noise at different intensity levels, and show how this collection of DLSTMA’s improves the performance of the ASR in comparison with the LSTM autoencoder.es
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes
dc.description.sponsorshipUniversidad de Costa Rica/[]/UCR/Costa Ricaes
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología/[CB-2012-01, No.182432]/CONACyT/Méxicoes
dc.identifier.citationhttps://link.springer.com/chapter/10.1007/978-3-319-43958-7_42
dc.identifier.doihttps://doi.org/10.1007/978-3-319-43958-7_42
dc.identifier.isbn978-3-319-43958-7
dc.identifier.urihttps://hdl.handle.net/10669/86306
dc.language.isoeng
dc.sourceSpeech and Computer (pp.354-361).Budapest, Hungría: Springer, Chames
dc.subjectLong short-term memory (LSTM)es
dc.subjectDeep learninges
dc.subjectDenoising autoencoderses
dc.titleImproving automatic speech recognition containing additive noise using deep denoising autoencoders of lstm networkses
dc.typecomunicación de congresoes

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1007@978-3-319-43958-742.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: