A user interaction bug analyzer based on image processing

Fecha

2016-08

Tipo

artículo original

Autores

Méndez Porras, Abel
Alfaro Velásco, Jorge
Jenkins Coronas, Marcelo
Martínez Porras, Alexandra

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

Mobile applications support a set of user-interaction features that are independent of the application logic. Rotating the device, scrolling, or zooming are examples of such features. Some bugs in mobile applications can be attributed to user-interaction features. Objective: This paper proposes and evaluates a bug analyzer based on userinteraction features that uses digital image processing to find bugs. Method: Our bug analyzer detects bugs by comparing the similarity between images taken before and after a user-interaction. SURF, an interest point detector and descriptor, is used to compare the images. To evaluate the bug analyzer, we conducted a case study with 15 randomly selected mobile applications. First, we identified user-interaction bugs by manually testing the applications. Images were captured before and after applying each user-interaction feature. Then, image pairs were processed with SURF to obtain interest points, from which a similarity percentage was computed, to finally decide whether there was a bug. Results: We performed a total of 49 user-interaction feature tests. When manually testing the applications, 17 bugs were found, whereas when using image processing, 15 bugs were detected. Conclusions: 8 out of 15 mobile applications tested had bugs associated to user-interaction features. Our bug analyzer based on image processing was able to detect 88% (15 out of 17) of the user-interaction bugs found with manual testing.

Descripción

Palabras clave

Bug analyzer,, User-interaction features, Image processing, Interest points, Testing