Logo Kérwá
 

Enhancing greenhouse efficiency: Integrating IoT and reinforcement learning for optimized climate control

dc.creatorPlatero Horcajadas, Manuel
dc.creatorPardo Pina, Sofía
dc.creatorCámara Zapata, José María
dc.creatorBrenes Carranza, José Antonio
dc.creatorFerrández Pastor, Francisco Javier
dc.date.accessioned2025-05-19T20:33:45Z
dc.date.issued2024-12-19
dc.description.abstractAutomated systems, regulated by algorithmic protocols and predefined set-points for feedback control, require the oversight and fine tuning of skilled technicians. This necessity is particularly pronounced in automated greenhouses, where optimal environmental conditions depend on the specialized knowledge of dedicated technicians, emphasizing the need for expert involvement during installation and maintenance. To address these challenges, this study proposes the integration of data acquisition technologies using Internet of Things (IoT) protocols and optimization services via reinforcement learning (RL) methodologies. The proposed model was tested in an industrial production greenhouse for the cultivation of industrial hemp, applying adapted strategies to the crop, and was guided by an agronomic technician knowledgeable about the plant. The expertise of this technician was crucial in transferring the RL model to a real-world automated greenhouse equipped with IoT technology. The study concludes that the integration of IoT and RL technologies is effective, validating the model’s ability to manage and optimize greenhouse operations efficiently and adapt to different types of crops. Moreover, this integration not only enhances operational efficiency but also reduces the need for constant human intervention, thereby minimizing labor costs and increasing scalability for larger agricultural enterprises. Furthermore, the RL-based control has demonstrated its ability to maintain selected temperatures and achieve energy savings compared to classical control methods.
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Centro de Investigaciones en Tecnologías de Información y Comunicación (CITIC)
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informática
dc.description.sponsorshipNext Generation EU/[PRTR-C17.I1]/NGEU/Unión Europea
dc.description.sponsorshipAGROALNEXT/[AGROALNEXT/2022/048]//Unión Europea
dc.description.sponsorshipGeneralidad Valenciana/[]//España
dc.description.sponsorshipAgencia Valenciana de la Innovación/[]/AVI/España
dc.identifier.citationhttps://doi.org/10.3390/s24248109
dc.identifier.citationhttps://www.mdpi.com/1424-8220/24/24/8109
dc.identifier.doi10.3390/s24248109
dc.identifier.urihttps://hdl.handle.net/10669/102090
dc.language.isoeng
dc.relation.ispartofseries0
dc.rightsacceso abierto
dc.sourceSensors, 24, Artículo 8109
dc.subjectsmart agriculture
dc.subjectreinforcement learning
dc.subjectIoT
dc.subjectgreenhouse energy management
dc.titleEnhancing greenhouse efficiency: Integrating IoT and reinforcement learning for optimized climate control
dc.typeartículo original

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Artículo - 12.pdf
Size:
511.3 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: