Logo Kérwá
 

Generación de reglas estadísticas a partir de grandes bases de datos

Loading...
Thumbnail Image

Authors

Schektman, Yves
Trejos Zelaya, Javier
Troupé, Marylène

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Given a set of categorical variables, we want to predict one or more of them by the way rules. We propose an algorithm that (i) is guided by statistical results in a relational geometry where we use assymetrical association indices, and (ii) makes statistical and euclidian approximations. The iterative method we propose can obtain rules without introducing a priori their premises in the set of independent conjonctions analized by the generator at each step. The algorithm has a linear complexity with regard to the number of individual; this property makes it suitable for large data sets. We present results over data examples.
Dado un conjunto de variables cualitativas, queremos predecir una o varias de ellas mediante reglas. Proponemos un algoritmo que (i) es guiado por resultados estadísticos en el marco de una geometría relacional, dentro de la cual se utilizan índices de asociación disimétricos, y (ii) efectúa aproximaciones estadísticas y euclidianas. El método iterativo propuesto puede obtener muchas reglas sin tener que introducir a priori sus premisas en el conjunto de conjunciones explicativas que el generador analiza en cada etapa. El algoritmo es de complejidad lineal respecto al número de individuos, por lo que sería particularmente bien adaptado a las grandes bases de datos. Se presentan resultados sobre ejemplos de datos.Palabras clave: reglas de producción, asociación disimétrica, adquisición de conocimientos, distancia relacional, número equivalente.

Description

Keywords

Citation

http://revistas.ucr.ac.cr/index.php/matematica/article/view/106

Endorsement

Review

Supplemented By

Referenced By