Logo Kérwá
 

Evaluation of the influence of multispectral imaging for object detection in pineapple crops

dc.creatorGonzález Hernández, Manfred
dc.creatorFallas Moya, Fabián
dc.creatorRodríguez Montero, Werner
dc.creatorXie-Li, Danny
dc.creatorRomán Solano, Bryan
dc.creatorCorrales Garro, Francini
dc.creatorQi, Hairong
dc.date.accessioned2025-06-16T17:05:12Z
dc.date.issued2024-01-05
dc.description.abstractNormally, most studies related to Object Detection focus only on RGB images. However, this research explores the feasibility of utilizing multispectral drone images, incorporating RGB channels with near-infrared, and red-edge channels, to perform Object Detection (OD) using drone images of pineapple crops. There are two main challenges when dealing with multi-spectral images. The first challenge is related to the alignment of the images when dealing with different cameras. Multispectral image alignment corrects for camera position and exposure time differences. We use SIFT and ORB for feature-based exposure matching after initial phase alignment. The second challenge is how to incorporate the extra channels into the RGB images, also known as channel fusion. Here, we studied two fusion techniques: early and late fusion. These techniques offer a comprehensive perspective on the potential of multispectral data to enhance object detection accuracy, although the anticipated leap in performance compared to conventional RGB imagery faced challenges. Finally, this research proves that using the correct alignment images process, considering the Vegetation Indexes, and also using the early fusion technique can assist in getting better results in order to improve the precision agriculture techniques.
dc.description.procedenceUCR::Sedes Regionales::Sede del Atlántico
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informática
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Agroalimentarias::Facultad de Ciencias Agroalimentarias::Escuela de Agronomía
dc.description.sponsorshipUniversidad de Costa Rica/[510-B9-453]/UCR/Costa Rica
dc.description.sponsorshipLaboratorio PRIAS/[]//Costa Rica
dc.identifier.codproyecto510-B9453
dc.identifier.doihttps://doi.org/10.1109/BIP60195.2023.10379335
dc.identifier.isbn979-8-3503-3005-2
dc.identifier.isbn979-8-3503-3006-9
dc.identifier.urihttps://hdl.handle.net/10669/102296
dc.language.isoeng
dc.rightsacceso embargado
dc.source2023 IEEE 5th International Conference on BioInspired Processing (BIP). Institute of Electrical and Electronics Engineers
dc.subjectmultispectral
dc.subjectobject detection
dc.subjectdeep learning
dc.subjectmultispectral imaging
dc.subjectcrops
dc.subjectvegetation mapping
dc.subjectdrones
dc.titleEvaluation of the influence of multispectral imaging for object detection in pineapple crops
dc.typecomunicación de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Artículo_FewShot.pdf
Size:
854.06 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: