Logo Kérwá
 

Detecting malicious domains using the Splunk machine learning toolkit

dc.creatorCersósimo Morales, Michelle Marie
dc.creatorLara Petitdemange, Adrián
dc.date.accessioned2025-04-09T16:20:27Z
dc.date.issued2022-06-09
dc.description.abstractMalicious domains are often hidden amongst benign DNS requests. Given that DNS traffic is generally permitted, blocking malicious requests is a challenge for most network defenses. Using machine learning to classify DNS requests enables a scalable alternative to programmable blocklists. Studies in this field often reduce their dataset scope to a a single attack behavior. However, organizations are being hit by a myriad of attack patterns across multiple objectives, reducing the scope means closing the door to classifier operationalization in a real-world environment. In this paper, we propose a broader and more challenging scenario for our dataset by combining the four DNS malicious behaviors: malware, phishing, spam and botnet with legitimate domains samples. We use Splunk and its Machine Learning Toolkit to create, test and validate our classifier. We extract 12 static features from the domain name and analyze their weight on the prediction. We compared two supervised learning algorithms and measure their accuracy for such challenging environment. We obtained an 88% of accuracy by using Random Forest algorithm against Decision Tree 87%.
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Centro de Investigaciones en Tecnologías de Información y Comunicación (CITIC)
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informática
dc.identifier.doihttps:://doi.org/10.1109/NOMS54207.2022.9789899
dc.identifier.isbn978-1-6654-0602-4
dc.identifier.isbn978-1-6654-0601-7
dc.identifier.issn2374-9709
dc.identifier.issn1542-1201
dc.identifier.urihttps://hdl.handle.net/10669/101897
dc.language.isoeng
dc.rightsacceso embargado
dc.sourceNOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. Institute of Electrical and Electronics Engineers
dc.subjectanalytical models
dc.subjectmachine learning algorithms
dc.subjectphishing
dc.subjectdata visualization
dc.subjectfeature extraction
dc.subjectprediction algorithms
dc.subjectdata models
dc.subjectdomain classification
dc.subjectmachine learning
dc.subjecttraffic classification
dc.subjectsecurity
dc.subjectfeature engineering
dc.subjectSplunk
dc.subjectcyber security
dc.titleDetecting malicious domains using the Splunk machine learning toolkit
dc.typecomunicación de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Detecting_Malicious_Domains_using_the_Splunk_Machine_Learning_Toolkit (2).pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: