Logo Kérwá
 

Papaya fruit image analysis in a segregating F2 mapping population

dc.creatorValerio Cubillo, Ovidio
dc.creatorBogantes Arias, Antonio
dc.creatorRojas, Felipe
dc.creatorvan Erp, Willem
dc.creatorAraya Valverde, Emanuel
dc.creatorZuñiga Centeno, Adonay
dc.creatorSáenz Murillo, Marco Vinicio
dc.creatorMora Newcomer, Eric
dc.creatorBarboza Barquero, Luis Orlando
dc.date.accessioned2019-10-23T20:22:30Z
dc.date.available2019-10-23T20:22:30Z
dc.date.issued2019
dc.date.updated2019-10-23T16:04:26Z
dc.description.abstractImage analysis can be used to phenotype papaya fruits and to extract from single images as many fruit properties as possible. This becomes especially attractive for mapping large populations, which, because of their size, require efficient phenotyping tools. Thus, a pipeline to evaluate papaya fruit was developed. Papaya images were acquired under post-harvest laboratory conditions, with pictures of skin and flesh (mesocarp) taken to automatically determine fruit dimensions and color. To phenotype the fruit cavity, a distance map function was used to create a hollow shell from filtered binary images. To measure the color of the fruits from the images, the pictures were analyzed for the CIEL*a*b color space and calibrated using a color checker. To validate the method, a papaya F2 population, derived from the cross between a small-fruit papaya (Solo type, 300 g) and a large-fruit papaya (1700 g) was evaluated. High correlations between fruit weight and fruit area were obtained (R2=0.97). Correlations between native R (R2=0.958), G (R2=0.898) and B (R2=0.891) values of the images with those of the color checker were also high. The linear regression found was used to generate calibration equations and correct the image colors for each individual pixel, resulting in a significant correlation (p≤0.05) between the colorimeter and the experimental set up used. Interestingly, parameters of the CIEL*a*b color space were negatively correlated with fruit weight (R2=-0.69). Quantitative trait loci (QTL) reported previously in the literature as controlling fruit size were used for mapping, and a fruit weight and size (using digital images) QTL was again significant (LOD score 5.4 with 16.9% of explained variance). Not all picture-derived traits were correlated nor controlled by the mapped QTLs, thus indicating the presence of novel traits derived from the fruit image analysis.es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro para Investigaciones en Granos y Semillas (CIGRAS)es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro de Investigaciones Agronómicas (CIA)es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Estación Experimental Agrícola Fabio Baudrit Moreno (EEAFBM)es_ES
dc.identifier.doi10.17660/ActaHortic.2019.1250.17
dc.identifier.issn0567-7572
dc.identifier.issn2406-6168
dc.identifier.urihttps://hdl.handle.net/10669/79767
dc.language.isoen_USes_ES
dc.rightsacceso abierto
dc.sourceISHS Acta Horticulturae 1250es_ES
dc.subjectCarica papayaes_ES
dc.subjectphenotypinges_ES
dc.subjectQTL mappinges_ES
dc.subjectdigital image processinges_ES
dc.titlePapaya fruit image analysis in a segregating F2 mapping populationes_ES
dc.typeartículo original

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Valerio et al.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description:

Collections