Long COVID diagnostic with differentiation from chronic lyme disease using machine learning and cytokine hubs
| dc.creator | Patterson, Bruce K. | |
| dc.creator | Guevara Coto, José Andrés | |
| dc.creator | Mora Rodríguez, Javier Francisco | |
| dc.creator | Francisco, Edgar B. | |
| dc.creator | Yogendra, Ram | |
| dc.creator | Mora Rodríguez, Rodrigo Antonio | |
| dc.creator | Beaty, Christopher | |
| dc.creator | Lemaster, Gwyneth | |
| dc.creator | Kaplan, Gary | |
| dc.creator | Katz, Amiram | |
| dc.creator | Bellanti, Joseph A. | |
| dc.date.accessioned | 2025-09-12T17:47:44Z | |
| dc.date.issued | 2024-08-26 | |
| dc.description.abstract | The absence of a long COVID (LC) or post-acute sequelae of COVID-19 (PASC) diagnostic has profound implications for research and potential therapeutics given the lack of specificity with symptom-based identification of LC and the overlap of symptoms with other chronic inflammatory conditions. Here, we report a machine-learning approach to LC/PASC diagnosis on 347 individuals using cytokine hubs that are also capable of differentiating LC from chronic lyme disease (CLD). We derived decision tree, random forest, and gradient-boosting machine (GBM) classifiers and compared their diagnostic capabilities on a dataset partitioned into training (178 individuals) and evaluation (45 individuals) sets. The GBM model generated 89% sensitivity and 96% specificity for LC with no evidence of overfitting. We tested the GBM on an additional random dataset (106 LC/PASC and 18 Lyme), resulting in high sensitivity (97%) and specificity (90%) for LC. We constructed a Lyme Index confirmatory algorithm to discriminate LC and CLD. | |
| dc.description.procedence | UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET) | |
| dc.description.procedence | UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiología | |
| dc.description.procedence | UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Cirugía y Cáncer (CICICA) | |
| dc.identifier.doi | https://doi.org/10.1038/s41598-024-70929-y | |
| dc.identifier.issn | 2045-2322 | |
| dc.identifier.uri | https://hdl.handle.net/10669/102843 | |
| dc.language.iso | eng | |
| dc.rights | acceso restringido | |
| dc.source | Scientific Reports, 14, Artículo 19743 | |
| dc.subject | COVID-19 | |
| dc.subject | post-acute sequelae of COVID-19 | |
| dc.subject | long COVID | |
| dc.subject | cytokines | |
| dc.subject | chronic lyme disease | |
| dc.subject | myalgic encephalomyelitis-chronic fatigue syndrome | |
| dc.subject | machine learning/AI | |
| dc.title | Long COVID diagnostic with differentiation from chronic lyme disease using machine learning and cytokine hubs | |
| dc.type | artículo original |