Reinforcement learning model in automated greenhouse control
| dc.creator | Ferrández Pastor, Francisco Javier | |
| dc.creator | Cámara Zapata, José María | |
| dc.creator | Alcañiz Lucas, Sara | |
| dc.creator | Pardo Pina, Sofía | |
| dc.creator | Brenes Carranza, José Antonio | |
| dc.date.accessioned | 2025-06-11T17:56:55Z | |
| dc.date.issued | 2023-11-26 | |
| dc.description.abstract | Automated systems, controlled with programmed reactive rules and set-point values for feedback regulation, require supervision and adjustment by experienced technicians. These technicians must be familiar with the scenario where the controlled processes are carried out. In automated greenhouses, achieving optimal environmental values requires the expertise of a specialist technician. This introduces the need for an expert in the installation and the problem of depending on them. To reduce these inconveniences, the integration of three paradigms is proposed: user-centered design, deployment of data capture technology based on IoT protocols, and a reinforcement learning model. The objective of the reinforcement learning model is to make decisions in the programming of set-points for the climate control of a greenhouse. In this way, the need for manual and repetitive supervision of the specialized technician is reduced; meanwhile, the control is optimized. The design, led by an expert technician in greenhouse installations, provides the necessary knowledge to transfer to a reinforcement learning model. On the other hand, deploying the required set of sensors and access to external data sources increases the capacity of the learning model to be deployed to current installations. The proposed system was tested in automated greenhouse facilities under the supervision of a specialized technician, validating the usefulness of the proposed system. | |
| dc.description.procedence | UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Centro de Investigaciones en Tecnologías de Información y Comunicación (CITIC) | |
| dc.description.procedence | UCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informática | |
| dc.description.sponsorship | Proyecto Agroalnext/[AGROALNEXT/2022/048]//Unión Europea | |
| dc.description.sponsorship | Next Generation EU/[PRTR-C17.I1]/NGEU/Unión Europea | |
| dc.description.sponsorship | Generalitat Valenciana/[]//España | |
| dc.description.sponsorship | Universidad de Costa Rica/[834-B9-189]/UCR/Costa Rica | |
| dc.identifier.codproyecto | 834-B9189 | |
| dc.identifier.doi | https://doi.org/10.1007/978-3-031-48642-5_1 | |
| dc.identifier.uri | https://hdl.handle.net/10669/102269 | |
| dc.language.iso | eng | |
| dc.rights | acceso restringido | |
| dc.source | Proceedings of the 15th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2023) (LNNS, 842, pp. 3-13). Springer | |
| dc.subject | reinforcement learning | |
| dc.subject | smart greenhouse | |
| dc.subject | Q-Learning | |
| dc.title | Reinforcement learning model in automated greenhouse control | |
| dc.type | comunicación de congreso |