Auto-Associative Initialization of LSTM Neural Networks for Fundamental Frequency Detection in Noisy Speech Signals

dc.creatorCoto Jiménez, Marvin
dc.date.accessioned2022-03-31T13:55:50Z
dc.date.available2022-03-31T13:55:50Z
dc.date.issued2018
dc.description.abstractIn this paper, we present a new approach for fundamental frequency detection in noisy speech, based on Long Short-term Memory Neural Networks (LSTM). Fundamental frequency is one of the most important parameters of human speech. Its detection is relevant in many speech signal processing areas and remains an important challenge for severely degraded signals. In previous references for speech enhancement and noise reduction tasks, LSTM has been initialized with random weights, following a back-propagation through time algorithm to adjust them. Our proposal is an alternative for a more efficient initialization, based on a supervised training using an Auto-associative network. This initialization is a better starting point for the fundamental frequency detection in noisy speech. We show the advantages of this initialization using objective measures for the parameter and the training process, with artificial noise added at different signal-to-noise levels. Results show the performance of the LSTM increases in comparison to the random initialization, and represents a significant improvement in comparison with classic algorithms of paramater detection in noisy conditions.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes_ES
dc.identifier.citationhttps://ieeexplore.ieee.org/document/9046486es_ES
dc.identifier.doi10.1109/MICAI46078.2018.00011
dc.identifier.isbn978-1-5386-9574-6
dc.identifier.urihttps://hdl.handle.net/10669/86345
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.sourceSeventeenth Mexican International Conference on Artificial Intelligence (MICAI). IEEE Xplore, Guadalajara, Mexico. 22-27 de octubre de 2018es_ES
dc.subjectLSTMes_ES
dc.subjectNeural Networkses_ES
dc.subjectFundamental Frequencyes_ES
dc.titleAuto-Associative Initialization of LSTM Neural Networks for Fundamental Frequency Detection in Noisy Speech Signalses_ES
dc.typecomunicación de congresoes_ES

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Articulo_IEEE_A.pdf
Tamaño:
503.78 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: