Logo Kérwá
 

Sparse bounds for the discrete spherical maximal function [Presentación]

dc.creatorMena Arias, Darío Alberto
dc.date.accessioned2023-10-06T20:09:26Z
dc.date.available2023-10-06T20:09:26Z
dc.date.issued2021-10-24
dc.description.abstractWe prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.es
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es
dc.description.sponsorshipWe prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.es
dc.identifier.citationhttp://www.ams.org/meetings/sectional/2283_program.html
dc.identifier.urihttps://hdl.handle.net/10669/90091
dc.language.isoeng
dc.rightsacceso abierto
dc.source2021 Virtual Fall Western Sectional Meetinges
dc.subjectMATHEMATICSes
dc.titleSparse bounds for the discrete spherical maximal function [Presentación]es
dc.typepresentación de congresoes

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Discrete_Spherical_Averages_AMS_meeting.pdf
Size:
472.55 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections