Revista de Matemáticas 3(1)

URI permanente para esta colección


Envíos recientes

Mostrando 1 - 6 de 6
  • Ítem
    Algoritmos de punto fijo usando subdivisiones simpliciales
    (2009-02-18 00:00:00) Azofeifa Z., Carlos E.
    In this paper we study an algorithm for approximating fixed points using simplicial subdivisions of the simplex. Furthermore, it is compared with algorithms of primitive sets.
  • Ítem
    Productos de Kronecker
    (2009-02-18 00:00:00) Poltronieri Vargas, Jorge
    We obtain the formulae of covariances between random, introducing the Kronecker’s products: asymmetrical and antisymmetrical.
  • Ítem
    La Ecuación de Hill con Potencial Irregular
    (2012-03-29 00:00:00) Cambronero, Santiago
    We consider the Hill equation whose potential is the formal derivative of a Hölder – continuous function of parameter \theta \in (0,1), and show that solutions of the discrete version converge to solutions of the original equation in a suitable way. This fact is used to establish existence and uniqueness theorems for this singular case, and to deduce some properties of solutions and the discriminant of the studied equation.
  • Ítem
    El incremento multivariado
    (2012-03-29 00:00:00) Alarcón Athens, Winston
    We develop and study a generalization to multivariate functions of the notion of increment, by mean of we can reproduce in several variables, many importants theorems of the Calculus in one variable. In particular, it is possible to reproduce isomorfically the reelaboration of the Riemann integral based on the notion of pre–primitive, exposed in [1]. This will be the treated in a future paper.
  • Ítem
    The multiplicative products between the Distribution (P ± i0)^{\lambda} and the Operators L^r{\delta} and K^r{\delta}
    (2012-03-29 00:00:00) Aguirre T., Manuel A.
    In this note we give a sense to some multiplicative products of distributions:i) (P ± i0)^{\lambda} . L^r {\delta}ii) (P± i0) ^{\lambda} . K^r{\delta }where (P ± i0)^{\lambda} is the distribution defined by the formula (2), P is the quadratic form defined by the formula (1), L^r is the ultrahyperbolic operator defined by (5) and  K^r is the Klein-Gordon operator iterated r-times defined by the formula (15).
  • Ítem
    Submartingalas finitas, teoremas de convergencia y métodos no standard
    (2012-03-29 00:00:00) Lobo Segura, Jaime
    Se examinan dos teoremas clásicos de convergencia de submartingalas en tiempo discreto, los de convergencia casi segura y en L^1, usando los métodos del análisis no standard. Se realiza para ello un estudio previo sobre las submartingalas finitas. El marco formal adoptado para el análisis no standard es el de la "Internal Set Theory" de E. Nelson.