Las inferencias en la comprensión de memes y noticias digitales sobre política
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
En las redes sociales interactuamos con gran variedad de géneros textuales, los cuales pueden influir en nuestras opiniones sobre diversos temas. En esta investigación estudiamos los géneros memes y noticias digitales y el proceso de comprensión asociado; por ello, nuestro objetivo consiste en describir las inferencias que produce un grupo de estudiantes universitarios a partir de memes y noticias digitales sobre política nacional. Con base en lo anterior, se creó una prueba de comprensión. En cuanto a la teoría, se parte de la multimodalidad con autores como Kress y Van Leeuwen (2006); Bateman (2008); Vergara (2021); Daly y Unsworth (2011); Sadosky y Paivio (2013); Mayer (2005); Parodi (2005, 2011, 2014, 2017, 2020); McNamara y Kintsch (1996). En relación con la primer etapa de la metodología, se recopilaron cien memes y cien noticias digitales sobre política nacional y se realizó un análisis de los componentes y las estructuras más frecuentes en ambos corpus. Al respecto, se aplicaron las siguientes categorías: las capas base, de plantilla, de contenido de Bateman (2008), las relaciones lógico-semánticas de Daly y Unsworth (2011), las categorías de Vergara (2021), así como categorías propias sobre temáticas y estructuras. Con base en los resultados, se eligieron los estímulos para la elaboración de la prueba de comprensión. En la segunda etapa, se elaboró la prueba, se validó y se mejoró nuevamente. En tercera instancia, se aplicó el segundo pilotaje y se analizaron los hallazgos. Para este fin, se crearon las categorías esperable/no esperable, se contabilizaron las inferencias fundamentales y optativas, así como una serie de categorías emergentes. Entre los datos salientes de la primera etapa, se encontró que la estructura más común en memes fue la canónica simple y la temática fue la estrategia de campaña. Por su parte, en noticias, las estructuras determinaron a partir de la posibilidad de aparición de los elementos compositivos y la disposición en la que estos aparecen en el cuerpo de la noticia. Con base en lo anterior, se encontró la estructura A como la más común. En cuanto a la temática, la más frecuente fue la gestión del legislativo. En cuanto a la prueba inferencial, se encontró un alto reconocimiento de referentes y de relaciones lógico-semánticas en el género meme, mientras que en las noticias digitales resultó menor. En cuanto al enfoque de inferencias optativas, en el caso de los memes, lo que más hicieron fue integrar información de ambos modos. Por su parte, en noticias el recurso más utilizado fue el verbal. Asimismo, los estudiantes de cuarto año lograron mejores resultados que los de primer año. En el caso de la pregunta sobre intención, los de cuarto año se enfocaron en intenciones asociadas al género que los de primer año. Estos hallazgos permiten observar una mejora en el proceso de comprensión de acuerdo con el nivel académico. La prueba de comprensión, además, se puede utilizar en futuras investigaciones relacionadas con las inferencias en textos multimodales. En esta línea, se aporta al entendimiento de cómo se comprenden algunos textos culturales, digitales y actuales.
In social networks we interact with a wide variety of textual genres, which can influence our opinions on various topics. In this research we study the memes and digital news genres and the associated comprehension process; therefore, our objective is to describe the inferences produced by a group of university students from memes and digital news about national politics. Based on the above, a comprehension test was created. In terms of theory, we start from multimodality with authors such as Kress and Van Leeuwen (2006); Bateman (2008); Vergara (2021); Daly and Unsworth (2011); Sadosky and Paivio (2013); Mayer (2005); Parodi (2005, 2011, 2014, 2017, 2017, 2020); McNamara and Kintsch (1996). In relation to the first stage of the methodology, one hundred memes and one hundred digital news items on national politics were collected and an analysis of the most frequent components and structures in both corpora was carried out. In this regard, the following categories were applied: the base, template and content layers of Bateman (2008), the logical semantic relations of Daly and Unsworth (2011), the categories of Vergara (2021), as well as our own categories of themes and structures. Based on the results, the stimuli for the elaboration of the comprehension test were chosen. In the second stage, the test was developed, validated and improved again. In the third stage, the second piloting was applied and the findings were analyzed. For this purpose, expected/not expected categories were created, fundamental and optional inferences and a series of emerging categories were counted. Among the salient data from the first stage, it was found that the most common structure in memes was the simple canonical structure and the theme was the campaign strategy. On the other hand, in digital news, the structures were determined based on the possibility of appearance of the compositional elements and the disposition in which they appear in the body of the news item. Based on the above, structure A was found to be the most common. As for the subject matter, the most frequent was legislative management. As for the inferential test, a high recognition of referents and logical-semantic relations was found in the meme genre, while in the news it was lower. As for the optional inference approach, in the case of memes, what they did most was to integrate information in both modes. On the other hand, in digital news, the most used resource was the verbal one. Likewise, fourth year students achieved better results than first year students. In the case of the question on intention, fourth year students focused on intentions associated with genre more than first year students. These findings allow us to observe an improvement in the comprehension process according to academic level. The comprehension test, moreover, can be used in future research related to inferences in multimodal texts. In this line, it contributes to the understanding of how some cultural, digital and current texts are understood.
In social networks we interact with a wide variety of textual genres, which can influence our opinions on various topics. In this research we study the memes and digital news genres and the associated comprehension process; therefore, our objective is to describe the inferences produced by a group of university students from memes and digital news about national politics. Based on the above, a comprehension test was created. In terms of theory, we start from multimodality with authors such as Kress and Van Leeuwen (2006); Bateman (2008); Vergara (2021); Daly and Unsworth (2011); Sadosky and Paivio (2013); Mayer (2005); Parodi (2005, 2011, 2014, 2017, 2017, 2020); McNamara and Kintsch (1996). In relation to the first stage of the methodology, one hundred memes and one hundred digital news items on national politics were collected and an analysis of the most frequent components and structures in both corpora was carried out. In this regard, the following categories were applied: the base, template and content layers of Bateman (2008), the logical semantic relations of Daly and Unsworth (2011), the categories of Vergara (2021), as well as our own categories of themes and structures. Based on the results, the stimuli for the elaboration of the comprehension test were chosen. In the second stage, the test was developed, validated and improved again. In the third stage, the second piloting was applied and the findings were analyzed. For this purpose, expected/not expected categories were created, fundamental and optional inferences and a series of emerging categories were counted. Among the salient data from the first stage, it was found that the most common structure in memes was the simple canonical structure and the theme was the campaign strategy. On the other hand, in digital news, the structures were determined based on the possibility of appearance of the compositional elements and the disposition in which they appear in the body of the news item. Based on the above, structure A was found to be the most common. As for the subject matter, the most frequent was legislative management. As for the inferential test, a high recognition of referents and logical-semantic relations was found in the meme genre, while in the news it was lower. As for the optional inference approach, in the case of memes, what they did most was to integrate information in both modes. On the other hand, in digital news, the most used resource was the verbal one. Likewise, fourth year students achieved better results than first year students. In the case of the question on intention, fourth year students focused on intentions associated with genre more than first year students. These findings allow us to observe an improvement in the comprehension process according to academic level. The comprehension test, moreover, can be used in future research related to inferences in multimodal texts. In this line, it contributes to the understanding of how some cultural, digital and current texts are understood.
Description
Keywords
multimodalidad, inferencias, comprensión, memes, noticias digitales, análisis multimodal, política costarricense
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International