Logo Kérwá
 

Dopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and Chalcogenide Moieties for Perovskite Solar Cells

dc.creatorSoto Montero, Tatiana
dc.creatorFlores Díaz, Natalie
dc.creatorMolina, Desiré
dc.creatorSoto Navarro, Andrea
dc.creatorLizano Villalobos, Andrés
dc.creatorCamacho, Cristopher
dc.creatorHagfeldt, Anders
dc.creatorPineda Cedeño, Leslie William
dc.date.accessioned2021-11-01T17:06:55Z
dc.date.available2021-11-01T17:06:55Z
dc.date.issued2020-10-04
dc.description.abstractHole-transport materials (HTMs) are key electronic components for the functioning of perovskite solar cells (PSCs) as they extract the photogenerated holes from the perovskite to be transported subsequently to the back electrode while minimizing the loss from electron recombination. Herein, we report the synthesis and characterization of novel germanium-based compounds with [{HC(CMeNAr)2}GeNCS] (2), [{HC(CMeNAr)2}Ge(S)NCS] (3), and [{HC(CMeNAr)2}Ge(Se)NCS] (4) compositions, with Ar = 2,6-iPr2C6H3 and the photovoltaic performance of 3 and 4 that is the same as for HTM in PSC. All compounds displayed excellent thermal properties and an appropriate alignment of energy levels for the perovskite with maximum optical absorption in the near-UV region. As revealed by space-charge limited-current (SCLC) measurements, compounds 3 and 4 have competing hole mobilities of about 1.37 × 10–4 and 4.88 × 10–4 cm2 V–1 s–1, respectively. Upon assessing PSC devices using 3 and 4 with triple-cation perovskite absorber Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, the power conversion efficiencies (PCEs) were about 13.03 and 9.23%, respectively, both without doping and additives, and were compared with benchmark HTM spiro-OMeTAD (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene). Quantum chemical calculations with DFT showed that the optoelectronic properties are strongly influenced by the combined contributions of the germanium atom, the pseudohalide moiety (NCS–), and chalcogenides (S2– or Se2–). Fine tuning the electronic properties of germanium is thus a good strategy for the targeted synthesis of potential conducting molecules in PSCs.es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Electroquímica y Energía Química (CELEQ)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Químicaes_ES
dc.identifier.citationhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02120
dc.identifier.codproyecto804-B7-271
dc.identifier.codproyecto115-B9-461
dc.identifier.doi10.1021/acs.inorgchem.0c02120
dc.identifier.issn1520-510X
dc.identifier.issn0020-1669
dc.identifier.urihttps://hdl.handle.net/10669/84970
dc.language.isoenges_ES
dc.rightsacceso embargado
dc.sourceInorg. Chem. 2020, 59, 20, 15154–15166es_ES
dc.subjectgermaniumes_ES
dc.subjectperovskiteses_ES
dc.subjectHydrocarbonses_ES
dc.subjectAromatic compoundses_ES
dc.titleDopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and Chalcogenide Moieties for Perovskite Solar Cellses_ES
dc.typeartículo original

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dopant-free hole-transport materials with germanium compounds.pdf
Size:
6.83 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections