Logo Kérwá
 

LiProS: FAIR simulation workflow to predict accurate lipophilicity profiles for small molecules

dc.creatorBertsch Aguilar, Esteban
dc.creatorPiedra, Antonio
dc.creatorAcuña Monge, Daniel Gerardo
dc.creatorSuñer, Sebastian
dc.creatorDe Souza Pinheiro, Sylvana
dc.creatorZamora Ramírez, William J.
dc.date.accessioned2025-12-15T19:20:52Z
dc.date.issued2024-10-17
dc.description.abstractThe consideration of the ionic partition coefficient in estimating pH-dependent lipophilicity profiles for small molecules has been previously emphasized through classification Machine Learning protocols. In alignment with the principles of Findable, Accessible, Interoperable, and Reusable (FAIR) data to enhance data management and sharing, we introduce LiProS: a FAIR workflow accessible via Google Colab. LiProS assists researchers in efficiently determining the appropriate pH-dependent lipophilicity profile based on the SMILES code of their molecules of interest. LiProS demonstrated its applicability in discerning the most suitable lipophilicity formalism based on small structural variations in potential cases of structure-based drug design.
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Química
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Laboratorio de Ensayos Biológicos (LEBI)
dc.description.sponsorshipUniversidad de Costa Rica/[115-C2-126]/UCR/Costa Rica
dc.description.sponsorshipUniversidad de Costa Rica/[908-C3-610]/UCR/Costa Rica
dc.identifier.citationhttps://chemrxiv.org/engage/chemrxiv/article-details/670eda9312ff75c3a1894265
dc.identifier.codproyecto115-C2-126
dc.identifier.codproyecto908-C3-610
dc.identifier.doihttps://doi.org/10.26434/chemrxiv-2024-znppb-v2
dc.identifier.issn1464-3391
dc.identifier.urihttps://hdl.handle.net/10669/103409
dc.language.isoeng
dc.rightsacceso abierto
dc.sourceBiological and Medicinal Chemistry
dc.subjectLipophilicity
dc.subjectSmall Molecules
dc.subjectFAIR simulation
dc.subjectHydrophobicity
dc.subjectPhysicochemical Properties
dc.titleLiProS: FAIR simulation workflow to predict accurate lipophilicity profiles for small molecules
dc.typeartículo original

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
li-pro-s-fair-simulation-workflow-to-predict-accurate-lipophilicity-profiles-for-small-molecules.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections