Dixmier traces on noncompact isospectral deformations
dc.creator | Gayral, Victor | |
dc.creator | Iochum, Bruno | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2023-04-27T19:39:01Z | |
dc.date.available | 2023-04-27T19:39:01Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We extend the isospectral deformations of Connes, Landi and Dubois-Violette to the case of Riemannian spin manifolds carrying a proper action of the noncompact abelian group R^l. Under deformation by a torus action, a standard formula relates Dixmier traces of measurable operators to integrals of functions on the manifold. We show that this relation persists for actions of R^l, under mild restrictions on the geometry of the manifold which guarantee the Dixmier traceability of those operators. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.identifier.citation | https://www.sciencedirect.com/science/article/pii/S002212360600067X | es_ES |
dc.identifier.doi | 10.1016/j.jfa.2006.02.010 | |
dc.identifier.issn | 1096-0783 | |
dc.identifier.uri | https://hdl.handle.net/10669/89158 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Journal of Functional Analysis, vol.237 (2), pp.507-539. | es_ES |
dc.subject | MATHEMATICS | es_ES |
dc.subject | GEOMETRY | es_ES |
dc.title | Dixmier traces on noncompact isospectral deformations | es_ES |
dc.type | artículo original | es_ES |