Riemannian manifolds in noncommutative geometry

Fecha

2012-07

Tipo

artículo original

Autores

Lord, Steven
Rennie, Adam
Várilly Boyle, Joseph C.

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spin^c manifolds; and conversely, in the presence of a spin^c structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré duality. Along the way we clarify the bimodule and first-order conditions for spectral triples.

Descripción

Palabras clave

geometría no conmutativa, variedad riemanniana, triple espectral, grupo de Kasparov

Colecciones