Reconstruction of manifolds in noncommutative geometry
dc.creator | Rennie, Adam | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2023-05-12T20:36:24Z | |
dc.date.available | 2023-05-12T20:36:24Z | |
dc.date.issued | 2008-01-31 | |
dc.description.abstract | We show that the algebra A of a commutative unital spectral triple (A,H,D) satisfying several additional conditions, slightly stronger than those proposed by Connes, is the algebra of smooth functions on a compact spin manifold. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.identifier.citation | https://arxiv.org/abs/math/0610418 | es_ES |
dc.identifier.doi | 10.48550/arXiv.math/0610418 | |
dc.identifier.issn | 2331-8422 | |
dc.identifier.uri | https://hdl.handle.net/10669/89248 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | ArXiv.org, pp. 1-69 | es_ES |
dc.subject | geometría no conmutativa | es_ES |
dc.subject | variedades diferenciales | es_ES |
dc.subject | operadores de Dirac | es_ES |
dc.subject | estructuras espín-c | es_ES |
dc.title | Reconstruction of manifolds in noncommutative geometry | es_ES |
dc.type | artículo preliminar | es_ES |