Logo Kérwá
 

A new coarse space for overlapping Schwarz algorithms for H(curl) problems in three dimensions with irregular subdomains

dc.creatorCalvo Alpízar, Juan Gabriel
dc.date.accessioned2019-06-03T16:45:32Z
dc.date.available2019-06-03T16:45:32Z
dc.date.issued2019
dc.description.abstractA new coarse space for a two-level overlapping Schwarz algorithm is presented for problems posed in three dimensions in the space H(curl, Ω). Previous studies for these methods are very restrictive about the geometry of the subdomains while this new space is well defined for general subdomains. The coarse space is based on energy minimization and its dimension equals the number of interior subdomain edges. Local direct solvers are used on the overlapping subdomains. The algorithm can be defined for any subdomain geometry and works for highly discontinuous coefficient distributions. Numerical experiments with irregular subdomains and different coefficient distributions are presented. The algorithm appears very promising even for random and discontinuous values of the coefficients.es
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es
dc.identifier.citationhttps://link.springer.com/article/10.1007/s11075-019-00707-9
dc.identifier.codproyecto821-B5A28
dc.identifier.doihttps://doi.org/10.1007/s11075-019-00707-9
dc.identifier.issn1572-9265
dc.identifier.urihttps://hdl.handle.net/10669/77378
dc.language.isoen_US
dc.rightsacceso abierto
dc.sourceNumerical Algorithms. 2019es
dc.subjectDomain Decompositiones
dc.subjectOverlapping Schwarz algorithmses
dc.subjectIrregular subdomain boundarieses
dc.subjectH(curl)es
dc.subjectDiscontinuous coefficientses
dc.subjectMaxwell’s equationses
dc.titleA new coarse space for overlapping Schwarz algorithms for H(curl) problems in three dimensions with irregular subdomainses
dc.typeartículo original

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.83 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections