Logo Kérwá
 

Spatio-temporal Downscaling Emulator for Regional Climate Models

dc.creatorBarboza Chinchilla, Luis Alberto
dc.creatorChou Chen, Shu Wei
dc.creatorAlfaro Córdoba, Marcela
dc.creatorAlfaro Martínez, Eric J.
dc.creatorHidalgo León, Hugo G.
dc.date.accessioned2023-06-19T18:17:20Z
dc.date.available2023-06-19T18:17:20Z
dc.date.issued2023-06-12
dc.description.abstractRegional Climate Models (RCM) describe the meso scale global atmospheric and oceanic dynamics and serve as dynamical downscaling models. In other words, RCMs use atmospheric and oceanic climate output from General Circulation Models (GCM) to develop a higher resolution climate output. They are computationally demanding and, depending on the application, require several orders of magnitude of computer time more than statistical climate downscaling. In this paper we describe how to use a spatio-temporal statistical model with varying coefficients (VC), as a downscaling emulator for a RCM using varying coefficients. In order to estimate the proposed model, two options are compared: INLA, and varycoef. We set up a simulation to compare the performance of both methods for building a statistical downscaling emulator for RCM, and then show that the emulator works properly for NARCCAP data. The results show that the model is able to estimate non-stationary marginal effects, which means that the downscaling output can vary over space. Furthermore, the model has flexibility to estimate the mean of any variable in space and time, and has good prediction results. INLA was the fastest method for all the cases, and the approximation with best accuracy to estimate the different parameters from the model and the posterior distribution of the response variablees_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físicaes_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)es_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-B0-810]/UCR/Costa Ricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-C0-074]/UCR/Costa Ricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-B9-454]/UCR/Costa Ricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-C0-610]/UCR/Costa Ricaes_ES
dc.identifier.citationhttps://onlinelibrary.wiley.com/doi/10.1002/env.2815es_ES
dc.identifier.citationhttps://arxiv.org/abs/2206.03914?context=states_ES
dc.identifier.codproyecto805-B0-810
dc.identifier.codproyecto805-C0-074
dc.identifier.codproyecto805-B9-454
dc.identifier.codproyecto805-C0-610
dc.identifier.doi10.1002/env.2815
dc.identifier.issn1180-4009
dc.identifier.issn1099-095X
dc.identifier.urihttps://hdl.handle.net/10669/89494
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.sourceEnvironmetrics, Early view, pp. 1-15es_ES
dc.subjectClimate model outputes_ES
dc.subjectINLAes_ES
dc.subjectSpatial temporal statisticses_ES
dc.subjectStatistical emulatores_ES
dc.subjectVarying coefficientses_ES
dc.titleSpatio-temporal Downscaling Emulator for Regional Climate Modelses_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Environmetrics - 2023 - Barboza - Spatio‐temporal downscaling emulator for regional climate models.pdf
Size:
2.8 MB
Format:
Adobe Portable Document Format
Description:
versión final

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections