Semigrupos dinámicos y las ecuaciones de Bloch en sistemas abiertos finitos
Files
Date
Authors
Várilly Boyle, Joseph C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
En la Mecánica Estadística sin equilibrio, se suele derivar las ecuaciones de transporte de un sistema abierto del requisito que tal sistema forma parte de un gran sistema dinámico conservativo cerca del equilibrio. Las ecuaciones “fenomenológicas” de Bloch para espín 1/2 ya han sido derivadas por esta vía: aquí analizamos el caso de espines mayores. Mostramos que los tiempos de relajación del sistema satisfacen la restricción T1 ≥ T2/P donde P = 2 para espín 1/2, P = 4 para espín 1, y para espines mayores P depende de la temperatura.
In non-equilibrium statistical mechanics, one often derives the transport equations for an open system from the requirement that such a system be part of a larger conservative dynamical system close to equilibrium. The “phenomenological” equations of Bloch for a 1/2-spin have already been derived by this method: here we analyze the case of higher spins. We show that the relaxation times of the system satisfy the restriction T1 ≥ T2/P where P = 2 for spin 1/2, P = 4 for spin 1, and for higher spins P is temperature-dependent.
In non-equilibrium statistical mechanics, one often derives the transport equations for an open system from the requirement that such a system be part of a larger conservative dynamical system close to equilibrium. The “phenomenological” equations of Bloch for a 1/2-spin have already been derived by this method: here we analyze the case of higher spins. We show that the relaxation times of the system satisfy the restriction T1 ≥ T2/P where P = 2 for spin 1/2, P = 4 for spin 1, and for higher spins P is temperature-dependent.
Description
Keywords
Mecánica estadística, Ecuaciones de Bloch