Logo Kérwá
 

A mixed-primal finite element approximation of a sedimentation–consolidation system

dc.creatorÁlvarez Guadamuz, Mario Andrés
dc.creatorGatica Pérez, Gabriel Nibaldo
dc.creatorRuiz Baier, Ricardo
dc.date.accessioned2022-11-08T20:57:22Z
dc.date.available2022-11-08T20:57:22Z
dc.date.issued2016
dc.description.abstractThis paper is devoted to the mathematical and numerical analysis of a strongly cou- pled flow and transport system typically encountered in continuum-based models of sedimentation–consolidation processes. The model focuses on the steady-state regime of a solid–liquid suspension immersed in a viscous fluid within a permeable medium, and the governing equations consist in the Brinkman problem with variable viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection — nonlinear diffusion equation describing the transport of the solids volume fraction. The variational formulation is based on an augmented mixed approach for the Brinkman problem and the usual primal weak form for the transport equation. Solvability of the coupled formulation is established by combining fixed point arguments, certain regularity assumptions, and some classical results concerning vari- ational problems and Sobolev spaces. In turn, the resulting augmented mixed-primal Galerkin scheme employs Raviart–Thomas approximations of order k for the stress andpiecewise continuous polynomials of order k + 1 for velocity and volume fraction, and its solvability is deduced by applying a fixed-point strategy as well. Then, suitable Strang- type inequalities are utilized to rigorously derive optimal error estimates in the natural norms. Finally, a few numerical tests illustrate the accuracy of the augmented mixed- primal finite element method, and the properties of the model.es
dc.description.procedenceUCR::Sedes Regionales::Sede de Occidentees
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes
dc.description.sponsorshipUniversidad de Chile (project Anillo ACT1118 ANANUM)es
dc.description.sponsorshipUniversidad de Concepción (Centro de Investigación en Ingeniería Matemática)es
dc.description.sponsorshipSwiss National Science Foundationes
dc.identifier.citationhttps://www.worldscientific.com/doi/abs/10.1142/S0218202516500202
dc.identifier.doihttps://doi.org/10.1142/S0218202516500202
dc.identifier.issn1793-6314
dc.identifier.urihttps://hdl.handle.net/10669/87625
dc.language.isoeng
dc.rightsacceso embargado
dc.sourceMathematical Models and Methods in Applied Sciences, 26(5), p. 867-900.es
dc.subjectBrinkman equationses
dc.subjectNonlinear transport problemes
dc.subjectAugmented mixed-primal formulationes
dc.subjectFixed point theoryes
dc.subjectSedimentation–consolidation processes
dc.subjectFinite element methodses
dc.subjectA priori error analysises
dc.subjectMATEMÁTICASes
dc.titleA mixed-primal finite element approximation of a sedimentation–consolidation systemes
dc.typeartículo originales

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
M. Álvarez et al. A mixed-primal approximation of a sedimentation-consolidation system. Mathematical Models and Methods in Applied Sciences, (2016).pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format
Description:
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. A mixed–primal finite element approximation of a sedimentation–consolidation system. M3AS: Mathematical Models and Methods in Applied Sciences, vol. 26, 5, pp. 867-900, (2016).

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections