The Dirac operator on SU_q(2)

Fecha

2005

Tipo

artículo original

Autores

Dabrowski, Ludwik
Landi, Giovanni
Sitarz, Andrzej
Van Suijlekom, Walter
Várilly Boyle, Joseph C.

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.

Descripción

Palabras clave

GEOMETRY, MATHEMATICS

Colecciones