The Dirac operator on SU_q(2)
Archivos
Fecha
2005
Tipo
artículo original
Autores
Dabrowski, Ludwik
Landi, Giovanni
Sitarz, Andrzej
Van Suijlekom, Walter
Várilly Boyle, Joseph C.
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.
Descripción
Palabras clave
GEOMETRY, MATHEMATICS