Logo Kérwá
 

A posteriori error analysis of a semi-augmented finite element method for double-diffusive natural convection in porous media

dc.creatorÁlvarez Guadamuz, Mario Andrés
dc.creatorColmenares García, Eligio Antonio
dc.creatorSequeira Chavarría, Filander A.
dc.date.accessioned2024-04-09T16:58:19Z
dc.date.available2024-04-09T16:58:19Z
dc.date.issued2024
dc.description.abstractThis paper presents our contribution to the a posteriori error analysis in 2D and 3D of a semi-augmented mixed-primal finite element method previously developed by us to numerically solve double-diffusive natural convection problem in porous media. The model combines Brinkman-Navier-Stokes equations for velocity and pressure coupled to a vector advection-diffusion equation, representing heat and concentration of a certain substance in a viscous fluid within a porous medium. Strain and pseudo-stress tensors were introduced to establish scheme solvability and provide a priori error estimates using Raviart-Thomas elements, piecewise polynomials and Lagrange finite elements. In this work, we derive two reliable residual-based a posteriori error estimators. The first estimator leverages ellipticity properties, Helmholtz decomposition as well as Clément interpolant and Raviart-Thomas operator properties for showing reliability; efficiency is guaranteed by inverse inequalities and localization strategies. An alternative estimator is also derived and analyzed for reliability without Helmholtz decomposition. Numerical tests are presented to confirm estimator properties and demonstrate adaptive scheme performance.es_ES
dc.description.procedenceUCR::Sedes Regionales::Sede de Occidentees_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[540-C0-089]/UCR/Costa Ricaes_ES
dc.identifier.citationhttps://onlinelibrary.wiley.com/doi/10.1002/num.23090es_ES
dc.identifier.codproyecto540-C0-089
dc.identifier.doi10.1002/num.23090
dc.identifier.issn1098-2426
dc.identifier.issn0749-159X
dc.identifier.urihttps://hdl.handle.net/10669/91161
dc.language.isoenges_ES
dc.rightsacceso embargado
dc.sourceNumerical Methods for Partial Differential Equations.es_ES
dc.subjectMATHEMATICSes_ES
dc.subjectEQUATIONSes_ES
dc.titleA posteriori error analysis of a semi-augmented finite element method for double-diffusive natural convection in porous mediaes_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alvarez-colmenares-sequeira-PUBLISHED_NUMPDE-2024.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections