Quantum electrodynamics in external fields from the spin representation

Fecha

1994-07

Tipo

artículo original

Autores

Gracia Bondía, José M.
Várilly Boyle, Joseph C.

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

Systematic use of the infinite-dimensional spin representation simplifies and rigorizes several questions in quantum field theory. This representation permutes "Gaussian" elements in the fermion Fock space, and is necessarily projective: we compute its cocycle at the group level, and obtain Schwinger terms and anomalies from infinitesimal versions of this cocycle. Quantization, in this framework, depends on the choice of the "right" complex structure on the space of solutions of the Dirac equation. We show how the spin representation allows one to compute exactly the S-matrix for fermions in an external field; the cocycle yields a causality condition needed to determine the phase.

Descripción

Palabras clave

Representación de espín, Cuantización, Teoría cuántica de campos, MATEMÁTICAS

Colecciones