Logo Kérwá
 

Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques

dc.creatorBarboza Chinchilla, Luis Alberto
dc.creatorChou Chen, Shu Wei
dc.creatorVásquez Brenes, Paola Andrea
dc.creatorGarcía Puerta, Yury Elena
dc.creatorCalvo Alpízar, Juan Gabriel
dc.creatorHidalgo León, Hugo G.
dc.creatorSánchez Peña, Fabio Ariel
dc.date.accessioned2023-05-24T19:52:22Z
dc.date.available2023-05-24T19:52:22Z
dc.date.issued2023-02-13
dc.description.abstractDengue fever is a vector-borne disease affecting millions yearly, mostly in tropical and subtropical countries. Driven mainly by social and environmental factors, dengue incidence and geographical expansion have increased in recent decades. Therefore, understanding how climate variables drive dengue outbreaks is challenging and a problem of interest for decision-makers that could aid in improving surveillance and resource allocation. Here, we explore the effect of climate variables on relative dengue risk in 32 cantons of interest for public health authorities in Costa Rica. Relative dengue risk is forecast using a Generalized Additive Model for location, scale, and shape and a Random Forest approach. Models use a training period from 2000 to 2020 and predicted climatic variables obtained with a vector auto-regressive model. Results show reliable projections, and climate variables predictions allow for a prospective instead of a retrospective studyes
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)es
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es
dc.description.sponsorshipUniversidad de Costa Rica/[805-B0-810]/UCR/Costa Ricaes
dc.description.sponsorshipUniversidad de Costa Rica/[805-C0-074]/UCR/Costa Ricaes
dc.description.sponsorshipUniversidad de Costa Rica/[805-B9-454]/UCR/Costa Ricaes
dc.description.sponsorshipUniversidad de Costa Rica/[EC-497]/UCR/Costa Ricaes
dc.description.sponsorshipUniversidad de Costa Rica/[805-C0-610]/UCR/Costa Ricaes
dc.identifier.citationhttps://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0011047
dc.identifier.codproyecto805-B0810
dc.identifier.codproyecto805-C0074
dc.identifier.codproyecto805-B9454
dc.identifier.codproyectoEC-497
dc.identifier.codproyecto805-C0610
dc.identifier.doihttps://doi.org/10.1371/journal.pntd.0011047
dc.identifier.issn1935-2735
dc.identifier.issn1935-2727
dc.identifier.urihttps://hdl.handle.net/10669/89286
dc.language.isoeng
dc.rightsacceso abierto
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.sourcePLoS Neglected Tropical Diseases, Vol.17(1), pp. 1-13es
dc.subjectRISKes
dc.subjectCLIMATEes
dc.subjectCOSTA RICAes
dc.subjectDengue feveres
dc.titleAssessing dengue fever risk in Costa Rica by using climate variables and machine learning techniqueses
dc.typeartículo originales

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Assessing dengue fever.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:
Articulo principal

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections