An augmented mixed–primal finite element method for a coupled flow–transport problem
dc.creator | Álvarez Guadamuz, Mario Andrés | |
dc.creator | Gatica Pérez, Gabriel Nibaldo | |
dc.creator | Ruiz Baier, Ricardo | |
dc.date.accessioned | 2022-11-04T16:32:22Z | |
dc.date.available | 2022-11-04T16:32:22Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this paper we analyze the coupling of a scalar nonlinear convection-diffusion problem with the Stokes equations where the viscosity depends on the distribution of the solution to the transport problem. An augmented variational approach for the fluid flow coupled with a primal formulation for the transport model is proposed. The resulting Galerkin scheme yields an augmented mixed-primal finite element method employing Raviart−Thomas spaces of order k for the Cauchy stress, and continuous piecewise polynomials of degree ≤ k + 1 for the velocity and also for the scalar field. The classical Schauder and Brouwer fixed point theorems are utilized to establish existence of solution of the con- tinuous and discrete formulations, respectively. In turn, suitable estimates arising from the connection between a regularity assumption and the Sobolev embedding and Rellich−Kondrachov compactness theorems, are also employed in the continuous analysis. Then, sufficiently small data allow us to prove uniqueness and to derive optimal a priori error estimates. Finally, we report a few numerical tests confirming the predicted rates of convergence, and illustrating the performance of a linearized method based on Newton−Raphson iterations; and we apply the proposed framework in the simulation of thermal convection and sedimentation-consolidation processes. | es_ES |
dc.description.procedence | UCR::Sedes Regionales::Sede de Occidente | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.description.sponsorship | Universidad de Concepción | es_ES |
dc.description.sponsorship | Universidad de Chile | es_ES |
dc.description.sponsorship | Swiss National Science Foundation | es_ES |
dc.identifier.citation | https://www.esaim-m2an.org/articles/m2an/abs/2015/05/m2an141070/m2an141070.html | es_ES |
dc.identifier.doi | 10.1051/m2an/2015015 | |
dc.identifier.issn | 1399-1427 | |
dc.identifier.uri | https://hdl.handle.net/10669/87599 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso embargado | |
dc.source | Mathematical Modelling and Numerical Analysis, 49(5), p. 1399 - 1427. | es_ES |
dc.subject | Stokes equations | es_ES |
dc.subject | Nonlinear transport problem | es_ES |
dc.subject | Augmented mixed-primal formulation | es_ES |
dc.subject | Fixed point theory | es_ES |
dc.subject | Thermal convection | es_ES |
dc.subject | Sedimentation-consolidation process | es_ES |
dc.subject | Finite element methods | es_ES |
dc.subject | A priori error analysis | es_ES |
dc.subject | MATEMÁTICAS | es_ES |
dc.title | An augmented mixed–primal finite element method for a coupled flow–transport problem | es_ES |
dc.type | artículo original | es_ES |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- M. Álvarez et al. An augmented mixed-primal finite element method for a coupled flow-transport problem. Mathematical Modelling and Numerical Analysis, (2015).pdf
- Tamaño:
- 4.47 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- M. Álvarez, G.N. Gatica and R. Ruiz-Baier. An augmented mixed–primal finite element method for a coupled flow–transport problem. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49, 5, pp. 1399-1427, (2015).
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: