Logo Kérwá
 

Aposteriori error estimation for an augmented mixed-primal method applied to sedimentation–consolidation systems

dc.creatorÁlvarez Guadamuz, Mario Andrés
dc.creatorGatica Pérez, Gabriel Nibaldo
dc.creatorRuiz Baier, Ricardo
dc.date.accessioned2022-11-04T16:24:24Z
dc.date.available2022-11-04T16:24:24Z
dc.date.issued2018-08-15
dc.description.abstractIn this paper we develop the aposteriorierror analysis of an augmented mixed-primal finite element method for the 2D and 3D versions of a stationary flow and transport coupled system, typically encountered in sedimentation–consolidation processes. The governing equations consist in the Brinkman problem with concentration-dependent viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection– nonlinear diffusion equation describing the transport of the solids volume fraction. We derive two efficient and reliable residual-based aposteriorierror estimators for a finite element scheme using Raviart–Thomas spaces of order kfor the stress approximation, and continuous piecewise polynomials of degree ≤k +1for both velocity and concentration. For the first estimator we make use of suitable ellipticity and inf–sup conditions together with a Helmholtz decomposition and the local approximation properties of the Clément interpolant and Raviart–Thomas operator to show its reliability, whereas the efficiency follows from inverse inequalities and localisation arguments based on triangle-bubble and edge-bubble functions. Next, we analyse an alternative error estimator, whose reliability can be proved without resorting to Helmholtz decompositions. Finally, we provide some numerical results confirming the reliability and efficiency of the estimators and illustrating the good performance of the associated adaptive algorithm for the augmented mixed-primal finite element method.es
dc.description.procedenceUCR::Sedes Regionales::Sede de Occidentees
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes
dc.description.sponsorshipComisión Nacional de Investigación Científica y Tecnológica/[PFFB03 CMM]/CONICYT/Chilees
dc.description.sponsorshipMinisterio de Educación/[ACT1118]//Chilees
dc.description.sponsorshipCentro de Investigación en Ingeniería Matemática//CI2MA/Chilees
dc.description.sponsorshipEngineering and Physical Sciences Research Council/[EP/R00207X/1]/EPSRC/Reino Unidoes
dc.identifier.citationhttps://www.sciencedirect.com/science/article/pii/S0021999118302651?via%3Dihub
dc.identifier.doihttps://doi.org/10.1016/j.jcp.2018.04.040
dc.identifier.issn0021-9991
dc.identifier.urihttps://hdl.handle.net/10669/87597
dc.language.isoeng
dc.rightsacceso embargado
dc.sourceJournal of Computational Physics, vol.367, pp. 322-346es
dc.subjectBrinkman-transport couplinges
dc.subjectNonlinear advection–diffusiones
dc.subjectAugmented mixed-primal formulationes
dc.subjectSedimentation–consolidation processes
dc.subjectFinite element methodses
dc.subjectA posteriori error analysises
dc.subjectMATEMÁTICASes
dc.titleAposteriori error estimation for an augmented mixed-primal method applied to sedimentation–consolidation systemses
dc.typeartículo originales

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
M. Alvarez et al. A posteriori error estimation for an augmented mixed primal method applied to sedimentation consolidation systems. Journal of Computational Physics (2018)..pdf
Size:
4.68 MB
Format:
Adobe Portable Document Format
Description:
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. A posteriori error estimation for an augmented mixed-primal method applied to sedimentationconsolidation system. Journal of Computational Physics, vol. 367, pp 322- 346, (2018).

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections