Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra

Fecha

1988-06-04

Tipo

artículo original

Autores

Várilly Boyle, Joseph C.
Gracia Bondía, José M.

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule.

Descripción

Palabras clave

Quantum mechanics in phase space, Tempered distributions, Locally convex spaces

Colecciones