Show simple item record

dc.creatorMaldonado Mora, Tito José
dc.creatorRutgersson, Anna
dc.creatorAlfaro Martínez, Eric J.
dc.creatorAmador Astúa, Jorge Alberto
dc.creatorClaremar, Björn
dc.description.abstractThe midsummer drought (MSD) in Central America is characterised in order to create annual indexes representing the timing of its phases (start, minimum and end), and other features relevant for MSD forecasting such as the intensity and the magnitude. The MSD intensity is defined as the minimum rainfall detected during the MSD, meanwhile the magnitude is the total precipitation divided by the total days between the start and end of the MSD. It is shown that the MSD extends along the Pacific coast, however, a similar MSD structure was detected also in two stations in the Caribbean side of Central America, located in Nicaragua. The MSD intensity and magnitude show a negative relationship with Niño 3.4 and a positive relationship with the Caribbean low-level jet (CLLJ) index, however for the Caribbean stations the results were not statistically significant, which is indicating that other processes might be modulating the precipitation during the MSD over the Caribbean coast. On the other hand, the temporal variables (start, minimum and end) show low and no significant correlations with the same indexes. The results from canonical correlation analysis (CCA) show good performance to study the MSD intensity and magnitude, however, for the temporal indexes the performance is not satisfactory due to the low skill to predict the MSD phases. Moreover, we find that CCA shows potential predictability of the MSD intensity and magnitude using sea surface temperatures (SST) with leading times of up to 3 months. Using CCA as diagnostic tool it is found that during June, an SST dipole pattern upon the neighbouring waters to Central America is the main variability mode controlling the inter-annual variability of the MSD features. However, there is also evidence that the regional waters are playing an important role in the annual modulation of the MSD features. The waters in the PDO vicinity might be also controlling the rainfall during the MSD, however, exerting an opposite effect at the north and south regions of Central America.es_ES
dc.description.sponsorshipSwedish International Development Cooperation Agency/[54100006]/SIDA/Sueciaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[VI-805-A9-532]/UCR/Costa Ricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-B6-143]/UCR/Costa Ricaes_ES
dc.description.sponsorshipConsejo Nacional para Investigaciones Científicas y Tecnológicas/[805-B6-143]/CONICIT/Costa Ricaes_ES
dc.description.sponsorshipMinisterio de Ciencia, Tecnología y Telecomunicaciones/[805-B6-143]/MICITT/Costa Ricaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.sourceAdvances in Geosciences; Volumen 42. 2016es_ES
dc.subjectCentral Americaes_ES
dc.subjectSea surface temperatureses_ES
dc.subject363.349 29 Sequías
dc.titleInterannual variability of the midsummer drought in Central America and the connection with sea surface temperatureses_ES
dc.typeartículo científico
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físicaes_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)es_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional