, .. .1 4 3,3 3; isa -s i t . xm mw i - .t A.” . . n I. 1.. . W n-M m u 5. nu ! 5. 5. 1. .. 1. . n. ua ... ». J 4 .. ., .. ” WM.. rm 3.. do .. 2: . o 1 N i{. . ) . A ? 3: . 1. . 1. # I R .9 .5:7it . y . ma. 5.. . }b. .52.K775 “4" " H! .. - m: ) 2a .4 ! 33 . 1: u 0: 3 flw n. h53 0 ta .= :rv l It . { .... .. . 1 : (o n 3: 4 ... . a: .6 .l . a. ‘ bums «4.517353'Slt'ate ; ,I University 30031 This is to certify that the thesis entitled DISCRIMINATION BETWEEN EARTHQUAKES AND CHEMICAL EXPLOSIONS IN EASTERN RUSSIA USING AMPLITUDE RATIOS OBTAINED FROM ANALOG RECORDS presented by Lepolt Linkimer has been accepted towards fulfillment of the requirements for the Master of degree in Geological Sciences Science m”£4” éfijor Proffiéor’s Signature 7/27/2005 Date MSU is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 p:/CIRC/DateDue.inddop.1 VI‘IIII QiI\l'II DISCRIMINATION BETWEEN EARTHQUAKES AND CHEMICAL EXPLOSIONS IN EASTERN RUSSIA USING AMPLITUDE RATIOS OBTAINED FROM ANALOG RECORDS By Lepolt Linkimer A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geological Sciences 2006 ABSTRACT DISCRIMINATION BETWEEN EARTHQUAKES AND CHEMICAL EXPLOSIONS IN EASTERN RUSSIA USING AMPLITUDE RATIOS OBTAINED FROM ANALOG RECORDS By Lepolt Linkimer Amplitudes information from 237 earthquakes (1.565% 100° E 160° E 170" W Figure 3. Percentage of seismicity occurring during local daytime in Northeast Russia (Modified from Mackey and Fujita, 2005). Labeled regions are the Southern Yakutia region (A) and the Magadan and Northern Yakutia regions (B). In this study various types of Pg/Sg amplitude phase ratios are explored as discrimants between earthquakes and explosions for the Yakutia and Magadan regions of Eastern Russia. There is a simple intuitive basis for choosing ratios of P- to S-wave as an earthquake-explosion discriminant. Explosions may be thought of, in theory, as spherically symmetric pressure sources and are expected to generate primarily P waves. On the other hand, earthquakes occur by shear slip along fault surfaces and radiate the greater fraction of their seismic energy as S waves. Therefore, explosions would be expected to have higher Pg/Sg ratios than earthquakes. Besides the intuitive basis of the PySg amplitude phase ratio, several other factors motivated its selection as the discriminant to be tested for Eastern Russia. First, there is a sufficient amount of amplitude information for both Pg and Sg phases in the Russian seismic bulletins and it can also be easily obtained from the archives of seismograms in the Russian networks. Second, no previous work has been reported using the Pg/Sg phase ratio in Eastern Russia. Since previous studies (Walter et al., 1995; Taylor, 1996; Hartse et al., 1997; Kim et al. 1997, 1998) in other regions of the world have shown that amplitude phase ratios can be used successfully as a discriminant between earthquakes and both nuclear and chemical explosions, their transportability to Eastern Russia seems reasonable. Third, Pg/Sg amplitude ratios are easy to calculate, and the comparison of these ratios between seismic stations can be easily done because the ratios offer the advantage of canceling variations in instrument responses. 1.1. Geographic Location The study area is located in the northern part of the Far East ofthe Russian Federation (Fig. 1). It mostly includes parts of the Sakha Republic (Yakutia) and the Magadan Oblast. It also includes the northern parts of the Amur Oblast and Khabarovsk Krai '. Explosion and earthquake identification analysis was performed in regions labeled as A and B in Figure 1. The total size of the two regions under analysis is approximately 4,700,000 kmz, which is about half the size of the United States. Region A comprises part of the Southern Yakutia and adjacent areas to the south, and region B consists of the Magadan District and the northeastern part of Yakutia. These regions were ' Oblast and Krai are terms that describe administrative divisions in Russia defined based on the location of the earthquakes and explosions found in the bulletins. Since both regions have different neotectonic regimens and crustal structure, the analysis was performed in these two separate regions in order to find possible differences in the performance of earthquake-explosion discriminants. 1.2. Neotectonic Setting The present tectonic of Eastern Russia results from the complex interactions between at least six different plates and microplates (Fig. 1). The movement of these plates and blocks may be controlled by the mutual convergence ofthe North American, Eurasian, Indian, and Pacific plates (Taponnier et al., 1982; Parfenov et al., 1987; Worrall et al., 1996). Microplates, such as Okhotsk, Amur, and Bering, and minor blocks, such as Korea-Khabarovsk, Stanovoy, and Transbaikal, have been proposed as being either extruded or rotating in a context of extrusion tectonics (Riegel et al., 1993; Worrall et al., 1996; Mackey et al., 1997; Fujita et al., 1997; Fujita et al., 2004). The plate boundaries between Eurasian and Amur, Eurasia and North American, Eurasia and Okhotsk, and North American and Okhotsk plates are located within the study area (Fig 1). The boundary between the Eurasian and Amur plates has been proposed to be the Olekma—Stanovoi Seismic Zone (OSSZ) located along the southern edge ofthe Siberian platform. The OSSZ is up to 200 km wide and extends for 1,000 km to the east of the Baikal rift as far as the Sea of Okhotsk. This zone includes faults of different geometry that move small blocks (Parfenov et al., 1987; Irnaev et al., 1994). Region A comprises a portion of this boundary. The Eurasia—North America plate boundary is defined fiom north to south by the Laptev Rift System (LRS) and the Chersky Seismic Belt (CSB). The LRS is expressed by several graben systems and seismicity which is primarily concentrated in clusters and bands that link the Arctic Mid-Ocean Ridge to the active CSB on the continent (Fujita et al., 1990a,b; Drachev, 2000; Koz’min et al., 2004). One or two microplates have been proposed in the Laptev Sea area as an attempt to explain the distribution of the seismicity in this region (Avetisov, 199; Drachev, 2000; Franke et al., 2000). Further south, the CSB is defined by a belt of epicenters that is about 400 km wide and 2000 km long and diffusely splits into two main branches: the northern one represents the Eurasia—Okhotsk plate boundary and the southern one represents the North America-Okhotsk plate boundary (Chapman and Solomon, 1976; Riegel et al., 1993; Imaev et al., 1994; Seno et al., 1996; Fujita et al., 1997). Two aspects make the Eurasia—North America plate boundary very peculiar: the North America—Eurasia pole of rotation is located in the vicinity of the plate boundary (Cook et al., 1986) and the LRS is one of the few places on Earth where an active ocean spreading center enters a continental edge (Drachev, 2000; Franke et al., 2000). Region B incorporates much of the CSB. The Eurasia—Okhotsk plate boundary is defined by a right lateral transpressional zone that extends from the CSB to Sakhalin Island (Riegel et al., 1993; Imaev et al., 1994, 2000). The North America-Okhotsk plate boundary is a left-lateral transpressional zone that extends from the CSB to the Kamchatka Peninsula (Riegel et al., 1993; Imaev et al., 1994). This plate boundary is presumed to lie on the Ulakhan fault, which is one of the largest strike-slip fault systems in northeastern Asia (~1500 km long). It has a spectacular expression that can be traced distinctly by remote sensing photographs and topographic maps (Imaev et al., 1994, Fujita et al. 2004). The Moma Rifl (MR) is another structure that is frequently discussed in the tectonic literature of Eastern Russia (Fig. 1). It comprises a series ofnorthwest trending topographic depressions mainly located along the North America-Okhotsk plate boundary between the Indigirka and Kolyma rivers. Even though both high heat flow and isolated recent volcanism are observed along the MR, this structure is considered to be an aborted Pliocene rift system. Based on focal mechanisms and geology, several authors have proposed that today the MR is a transpressional zone along most of its length (Cook et al., 1986; Fujita et al., 1990a; Imaev et al., 1995, Franke et al., 2000). 1.3. Previous Work on Explosion Discrimination The problem of explosion and earthquake discrimination has long been known in seismology. Given this interest in the CTBT, nuclear explosions have been the focal point for the studies of explosions as seismic sources and their comparisons with earthquakes. Nevertheless, other events of significance, such as chemical explosions (mining, constructions), rock bursts, mine collapses, and volcanic earthquakes are also found in the literature. The key to discriminating between earthquakes and explosions is an examination of the sources of each event. Among the factors that are likely to differentiate earthquakes from explosions in seismograms are the source mechanisms, i.e., double couple for earthquakes vs. center of dilation for explosions, the amount of shear and compressional energy that is radiated from the source, the duration of the processes at the source, and the depth of the source. Table 1 contains a summary ofthe theoretical differences between earthquakes and explosions discussed in this section. Most previous studies on earthquake-explosion discrimination have mainly involved the analysis of wave forms (amplitudes, frequencies, energy) and the temporal and geographical distribution of earthquakes and explosions. Amplitude ratios from combinations of seismic phases and frequency bands have been used successfully to discriminate between earthquakes and both chemical and nuclear explosions. However, only approaches based on geographical and temporal distribution of earthquakes and explosions are found in the literature for the study area in Eastern Russia (Tables 2 and 3). Explosions and earthquakes differ fundamentally in their source function. In general, the source time function of earthquakes shows a complex source process with a longer duration, implying that earthquake processes involve a fault dimension of a few to several tens of kilometers. In contrast, the explosion source presents a relatively simple source time function with one or two pulses and a much shorter source duration (Li et al., 1995). In theory explosions are “expansion center” sources, therefore, the primary waves they emit are recorded at all azimuths as compressional waves. This is true for nuclear explosions and also for explosion fields used in open-pit mining and construction (Deneva et al., 1989). As opposed to explosions, earthquakes are recorded with a quadrant or quasi-quadrant P-wave polarity distribution. Unfortunately, first motions observations not always can be read because amplitudes are very low. 10 Table 1. Theoretical differences between earthquakes and explosions of similar magnitude. See text for references. Factors Explosions Earthquakes First motion of P wave Compression at all Quadrant or quasi-quadrant azimuths”) sing distribution (compression and dilation depending on the azimuth) Complexity of the source Simpler, it comprises one or More complex, it comprises rupture process two simple pulses (2) multiple source pulses Duration ofprocesses at the Shorter (2) Longer source Source dimension Smaller Much larger Presence of surface waves High-amplitude Almost unobservable at regional distances Frequency of the dominant Above 10 Hz Below 10 Hz amplitude Source depth Usually no more than tens Usually deeper than 2.5 km to hundreds of meters Attenuation with distance Faster Slower Macroseismic surface effect Felt at smaller distances Felt more strongly and at greater distancesOrigin local time Show time periodicity, Do not show timeusually diurnal periodicity 1. However, tectonic release caused by an explosion can generate a non-isotropic radiation pattern like a double couple earthquake (Fujita et al., 1995; Li et al., 1995). 2. However ripple fire explosions can be complex sources with duration of several seconds. 11 Table 2. Selected previous works on discrimination between chemical explosions and earthquakes Reference Discriminant Region Agnew (1990) Analysis of the temporal and San Diego area, southern geographical distribution of California the seismicity using histograms and maps Deneva et al. (1989) Amplitude phase ratios (SIP) Sofia seismic zone, and envelopes of coda waves Bulgaria Fah and Koch (2002) Multivariate statistical analysis Central Switzerland considering S/P ratios Filina (1999) Ratios of periods (S/P) Altai-Sayan Region (southern Siberia and parts of Kazakhstan, China, and Mongolia) Fujita et al. (2002) Analysis of the temporal and Chukotka, Northeastern geographical distribution of Russia the seismicity Kim et al. (1997) 3-D spectrograms and Pg/Lg Southern Russia, near ratios Kislovodsk Kim et al. (1998) 3-D spectrograms and Pg/Lg at North and South Korea different frequency bands Kim et al. (1993) Pg/Lg ratios Northeastern United States Mackey, (1999); Mackey Analysis of the temporal Eastern Russia and Fujita, (1999 and distribution of the seismicity 2001); Mackey et al. using maps showing the (2002), and Mackey et percentage of seismicity al. (2003) occurring during local daytime in discrete cells Malarnud and AK (K class comparison at Dushanbe-Vakhsh Nikolaevskii (2001) different distances) region, Tajikistan Odinets (1996) Analysis of the temporal Kolyma Region,distribution of the seismicity northeastern Siberia.using histogramsWiemar and Baer (2000) Ratios of daytime to nighttime Switzerland, Alaska, andevents in discrete cells Western US 12 Table 3. Selected previous works on discrimination between nuclear explosions and earthquakes Reference Discriminant Region Derr (1970) Rayleigh-wave spectral Western United States amplitude ratios Hartse et al. (1997) Many combinations of Western China and amplitude ratios at different Kyrgyzstan frequency bands Li et al. (1995) Relative source time functions Central Asia (southern estimated using empirical Siberia and nonwestem Green’s functions China) Pomeroy et al. (1982) Fifteen classes of regional Global discriminants, including first motion, Mszmb, and Lg/Rg, Pn/Lg, Pg/Lg and Pmax/Lg amplitude ratios Stevens and Day (1985) mb: Ms and Variable Global Frequency Magnitude (VFM) Taylor et al. (1989) Multivariate statistical analysis NTS and Western United considering mb: Ms, Lg/Pg, States Lg/Rg, Lg/Sm short period amplitude ratios, and Pn,Pg, and Lg spectral ratios Taylor (1996) Pg/Lg, Pn/Lg, and Lg and Pg NTS and Western United spectral ratios States Walter et al. (1995) Pn/Lg and Pg/Lg and Pn, Pg, NTSLg and Lg coda spectral ratios NTS. Nevada Test Site 13 The reliability of the first motion as an earthquake-explosion discriminant can be also affected by the distorting influence of instruments and local structure that change the authentic pattern of the first motions (Pomeroy et al., 1982; Filina, 1999). It is also important to recognize that tectonic release caused by larger explosions could generate a non-isotropic radiation pattern like a double couple earthquake (Li et al., 1995). For example, the “Horizon-4” peacefirl nuclear explosion detonated in the Northern Yakutia region in 1975 presents a mechanism of a double-couple thrust source (Fujita et al., 1995) Another fundamental difference between earthquakes and explosions is the depth of the source. Explosions usually have depths of tens to hundreds of meters, whereas earthquakes are usually deeper than 2.5 km. However, this fact cannot always be used as a criterion of discrimination, since the accuracy of hypocenter determinations in a regional network is about 2.5 km at best (Malamud and Nikolaevskii, 2001). Since the majority of explosions occur at shallower depths than earthquakes, there is a predominant effect of depth on seismic waves. One difference observed in records obtained at equal regional distances from explosions and earthquakes that have comparable energy is the presence of high-amplitude surface waves in explosions records. On the other hand, surface waves from earthquakes at similar distances are almost unnoticeable against the background of S waves. This makes the shape of the envelope a criterion of explosion recognition because it essentially reflects the presence of more intense surface waves in explosions (Filina, 1999). The frequency content is also different between explosions and earthquakes. Several studies have suggested that the frequency of the dominant amplitude appears to 14 be higher (above 10 Hz) for explosions than for earthquakes (Kim et al., 1997; Kim et al., 1998). It is important to note that the frequency contents of P and S waves depend on the specific propagation paths and local structure; therefore, the frequency of the dominant amplitude may vary from one region to another. The duration of processes at the source has also been found to be different between the two types of events. For example, moderate earthquakes (5.5 b s é .5 p 9 0| O U‘ r 1 l 1 A 1* e cameo We» p am... not» Mr» eeqW- 0 no» oH—uo—no—bo» me. o o 9W» >9 new... or» ewe-nee ‘1» ”CW... bem (new 0 . . no o on“ e r D womw' D ' com > ,ooo-cheee, o promo carpet-coco COW» D The rock properties (gas porosity, density, and velocity) in the near-source zone of explosions have also been found to have an effect on the performance of the same discriminant in different regions. For example, Walter et al. (1995) showed that the Pg/Lg ratio separates all the earthquakes from the Nevada Test Site (NTS) nuclear explosions detonated in low gas-porosity-high strength materials. On the other hand, nuclear explosions detonated in high gas-porosity-low strength materials significantly overlap the earthquakes. Hartse et al. (1997) showed that the Lg (3-6 Hz/O.75-l .5 Hz) spectral ratio did not separate earthquakes and nuclear explosions in central Asia in the same way that these events were separated at the NTS. According to these authors, this situation may be due to source medium properties effects, as Asian explosions are thought to be detonated in highly lithified rocks below the water table, while most ofthe smaller (mb<4.8) NTS explosions have been detonated in poorly lithified rocks above the water table. Below, a brief summary of the results obtained by several authors using amplitude ratios and spectral analysis is presented. Deneva et al. (1989) successfully discriminated between chemical explosions and earthquakes using amplitude (S/P) ratios as a function of both magnitude and distance. They studied the Sofia seismic zone in Bulgaria using 1500 events (6 < A < 50 km, 0.5 < Mag.< 2.3), of which 1420 were explosions and 80 were earthquakes, recorded with a vertical short-period seismograph (S-13 seismometer). They concluded that when the S/P amplitude ratio is above 2.5 the source is not an explosion. Filina (1999) compared the frequency compositions of body and surface waves of 90 chemical explosions and earthquakes (50 < A < 700 km, 1.5 < Mag. < 3.5) recorded by SMK-3 instruments in the Altai-Sayan region which includes southern Siberia and 18 adjacent areas of Kazakhstan, China, and Mongolia. The frequency composition was analyzed using visible periods ofmaximum phases for waves of various types. The ratio ofperiods (Ts/Tp) from earthquakes and explosions was found to be practically independent of epicentral distances, but it is higher by about 0.3 in the case of explosions. Kim et al. (1997) observed that earthquakes and chemical multiple-hole ripple- frred explosions in the Caucasus area of southern Russia, near Kislovodsk, show distinctive patterns in the spectral content of P and S waves. They analyzed high frequency (1 to 25 Hz) regional records from 25 small earthquakes (Mag. < 4.5) and chemical explosions of comparable magnitude in distance ranges of 15 to 233 km. They found that the network-averaged vertical component Pg/Lg in the frequency band of 8 to 18 Hz served well for classifying the events, with explosions having higher values than earthquakes (Fig. 4a). They found that the Pg/Lg spectral ratios of rotated, three— component regional records improved the discrimination power ofthe spectral ratio method in the same frequency band. A similar approach was used by Kim et al. (1998) to study the frequency content of ten chemical explosions (Mag. 5 3.0) and 20 small earthquakes (Mag. S 4.0) recorded in the Korean Peninsula. In order to get closer to the radiation characteristics of the sources, these authors calculated the Pg/Sg ratio from free surface corrected P, SV, and SH seismograms and considered the average of frequency bands obtained for each station. They found that chemical explosions had higher values than earthquakes (Fig. 4b). The best separation was observed from 6 to 8 Hz with a critical value of log(Pg/Sg) = -0.5 (or Pg/Sg = 0.32), although other frequency bands were also valid for discrimination. 19 Walter et al. (1995) analyzed 130 underground nuclear explosions, one large chemical explosion, and 50 earthquakes (190 < A < 315 km; 2.0 < Mag. < 6.5) recorded at two broadband seismic stations in the vicinity of the NTS. They found that the Pn/Lg and Pg/Lg phase ratios both showed little dependence on magnitude and worked better at higher frequencies and when the two stations used were averaged. At 6 to 8 Hz explosions have larger Pn/Lg ratios than earthquakes. Taylor (1996) also studied events at the NTS. This author was able to correctly identify 95% of 294 NTS nuclear explosions and 114 western United States earthquakes (175 < A < 1300 km, 2.5 < Mag. < 6.5) using the high-frequency (0.5 and 10 Hz) Pg/Lg discriminant in six different frequency bands for events recorded at four broadband seismic stations. The best discrimination occurred for larger magnitudes and higher frequencies (6-8 and 8-10 Hz bands). Hartse et al. (1997) successfully discriminated between earthquakes and underground nuclear explosions using different types of amplitude ratios. They measured noise and signal levels of over 380 earthquakes (2.5 > m, > 6.1) and 31 underground nuclear explosions (4.5 > m, > 6.5) recorded at different regional distances (<1700 km) at two stations in western China and Kyrgyzstan. They concluded that the most effective discriminants for this region were the following: phase ratios for frequencies above 4 Hz, P(3-6 Hz/O.75-1.5 Hz) spectral ratios, P(3-6 Hz)/S(0.75-1.5 Hz) cross spectral ratios, and short period (21 Hz) to long period Rayleigh-wave (0.05-0.1 Hz) ratios. For all of these ratios, explosions had higher values than earthquakes. 20 1. 3. 2. Discrimination Based on Geographical and Temporal Distribution Temporal analysis of the seismicity is a very simple and practical method for detecting areas with explosion contamination. The basis of this method is that blasting, whether or not geographically dispersed, is usually concentrated in time. This is because chemical and mining explosions are usually detonated during the daytime hours. On the other hand, earthquakes do not show such a diurnal periodicity. A ratio of daytime to nighttime events (Rq) is a useful way to express time-biased seismicity. Wiemar and Baer (2000) identified regions with high quarry activity in Switzerland, Alaska, and the western part of the United States by mapping Rq over the mentioned regions. Examples of time-biased temporal distribution of the seismicity are usually found in the vicinity of mining regions and construction projects. For example, in Southern Russia, near Kislovodsk, Kim et al. (1997) observed that 87.5% of the events recorded in 1992 and located within 15 km of the Tymauz mine were clustered near two peak times, 10 am and 4 pm. They also observed that 100% of the events located within the 10 km radius of the Ust-Djeguta and Tsementny-Zavod quarries, also in southern Russia, were clustered near 2 pm. Another example was discussed by Agnew (1990) in the San Diego area of southern California. This author showed that the seismicity from 1976 to 1988 had two large peaks in time: one just before noon and another in the late afternoon. 1.3.3. Previous Studies in Eastern Russia Analysis ofthe temporal distribution of recorded events has also been applied to identify areas of explosion contamination in Eastern Russia (Godzikovskaya, 1995; 21 Odinets, 1996; Mackey, 1999; Mackey and Fujita, 1999 and 2001; Fujita et al., 2002; Mackey et al., 2002; and Mackey et al., 2003). Odinets (1996) found that a large fraction of the earthquakes reported in the central Kolyma region in northeast Siberia were in reality explosions. Mackey and Fujita (2001) observed regions with presumed explosion contamination based on the fact that the majority of seismicity occurs during daytime hours. Mackey (1999) found that the Amur District had the clearest explosion contamination. He observed that when he plotted local daytime and local nighttime epicenters separately, there were several large clusters of epicenters that could be correlated geographically with specific mining regions. Mackey et al. (2003) calculated the fraction of day vs. night events in discrete cells for Eastern Russia (Fig. 3). These authors noted several clusters with more than 90% of events occurring during local daytime. Areas where events occurred primarily during daylight hours were correlated geographically with specific mining regions. They also found a correlation between daytime-biased cells with constructions projects, such as the route of the Baikal-Amur mainline railroad construction and the Kolyma hydroelectric dam in northeast Siberia. They also identified areas with explosion contamination in the Amur District (Fig. 5), Southern and Northern Yakutia regions, the Magadan region, and Sakhalin Island. The Polyarni region in Chukotka was also found to have explosion contamination (Fujita et al., 2002; Mackey et al., 2003). Mackey and Fujita (2001) and Mackey et al. (2003) determined that, for northeast Siberia, the levels of explosion contamination also changed with the season because 22 explosions in placer mining districts are mostly concentrated during the late winter and early spring, when frozen ground is broken up for the summer processing season. Figure 5. Seismicity in the Amur region. A) Daytime. B) Nighttime. Gray shaded regions indicate clear explosion contamination (Modified from Mackey et al., 2003). 23 1.3. 4. Other Techniques The mszs, Variable Frequency Magnitude (VFM), and the AK discriminants are other techniques used for earthquake-explosion discrimination that involve the comparison of seismic energy radiated from earthquakes and explosions. The mszs discriminant is mostly used for discriminating earthquakes and nuclear explosions. This method is based on the observation that, in general, nuclear explosions have substantially higher mb than earthquakes for the same seismic moment. This results in a difference between the magnitudes of body and surface waves (mb-Ms) that is greater for explosions than for earthquakes. (Douglas et al., 1974, Stevens and Day, 1985, Taylor et al., 1989). The Variable Frequency Magnitude (VFM) method is based on the observation that body waves from nuclear explosions contain more high-frequency energy than body waves from earthquakes of comparable size. In this method, the body wave magnitude is measured from narrow-band-filtered seismograms at two different frequencies, f1 and f2, usually about f1= 0.5 Hz and f2 = 3.0 Hz. In many circmnstances, a plot of mb(f1) versus mb(f2) produces a clear separation of earthquakes and explosions. When spectral magnitudes are measured for a large number of events, the earthquake and explosion populations fall into different regions on the plot, with mb(f2)-mb(f1) typically larger for explosions than for earthquakes (Stevens and Day, 1985). Malamud and Nikolaevskii (2001) proposed a convenient method based on the comparison of seismic energy (K) class from data oftwo stations at different epicentral distances in the Dushanbe-Vakhsh region in Tajikistan. They demonstrated that the difference (AKzKi'Kj) between two stations (i and j) at different distances (xi < Xj) is 24 generally positive for earthquakes and negative for chemical explosions. This may be attributed to the fact that most of the seismic energy generated by explosions attenuates in the zone near the source. Consequently, with increasing distance, a further decrease in the amplitude of an explosion-generated signal is much less significant than in the case of earthquake signals. This technique does not allow the discrimination for some pairs of stations. The authors attributed this situation to specific local tectonic effects, such as the anisotropy and fracturing of rocks. 25 2. DATA ANALYSIS AND RESULTS In the following sections, the methodology of amplitude phase ratio processing are explained. Amplitude phase ratios are shown in four different ways: the raw phase ratio, the distance-corrected phase (DCP) ratio, the network-averaged phase (NAP) ratio, and the network-averaged distance-corrected phase (NADCP) ratio. The results are discussed separately for the two regions studied: the Southern Yakutia region and the Magadan and Northern Yakutia regions. 2.]. Data Sources, Seismic Stations, and Type ofExplosions Amplitude information, arrival times, and location parameters of 544 events, including 259 earthquakes and 285 known chemical explosions, recorded between 1985 and 2000, were acquired from unpublished bulletins and analog seismograms made available from the Yakutia and Magadan regional networks. The amplitude collected from the bulletins consists ofpeak-to-peak maximum amplitudes for both Pg and Sg phases recorded on each of the three components Z, N-S, and E-W. Amplitudes were determined from analog seismograms in Russia by measuring the maximum peak of both Pg and Sg phases in millimeters. In order to obtain amplitude in microns, these values were first divided by two, and then divided by the station amplification in thousands. Two examples of amplitude measurements made using seismograms from an earthquake and an explosion obtained in Russia are shown in Figure 6. 26 B) Explosion 19860123 06:47 K= 9.4, Dist=193 km Station Amplification: 44,750 w M m m} n: u I": P-g—z 27mm 0 .210 microns ...___..__~.M m-— M- » Figure 6. Examples of amplitude measurements made on the vertical component of a seismograrn ofA) An earthquake recorded at SEY and B) an explosion recorded at USZ. The amplitude calculation is shown for both Pg and Sg phases. Note that these seismograms read from right to left. 27 I ItIIInullilllllllIlll l gglllllllg as; S . B B IIIIIIQ N Specific frequency ranges are not considered explicitly in this study due to the unavailability of this information in the analog Russian bulletins. However, there is a frequency range implicit in the records used, since the seismic stations utilized SM-3, SKM, or VEGIK short period seismometers, which record periods between 018-13 5 (076-55 Hz). This is considered the frequency range in which the phase ratios calculated in this study are valid. The stations used in the analysis are summarized in Table 4 and shown in Figure 7. Approximately 65% of the amplitude information comes from the following seven stations: Chagda (CGD), Chul' man (CLNS), Seirnchan (SEY), Tungurcha (TUG), Ust’ Nera (UN 1 S), Ust’ Nyukzha (USZ), and Ust’ Urkima (UURS). The majority of the chemical explosions considered in the analysis are related to open-pit mining activities. These explosions were conducted under a technique called ripple fire. The geometry of the detonation consisted of a set of five to 15 lines, in which each line has a number of holes filled with explosives to depths of 10-15 m. The detonation occurs with a time delay in each line that can be in the order of 50 milliseconds. The total amount of explosive used could range from 10 to 200 tons and the total duration ofthe detonation could be in the order of tends of seconds (Mackey, pers. com.) 28 Table 4. Seismic stations used in this study Station Name Lat N Long E Seismic Network N“::::: “f Region") ATKR Artyk 64. 1 8 145. 13 Yakutia 24 B BTG Batagai 67.65 134.63 Yakutia 9 B CGD Chagda 58.75 130.62 Yakutia 77 A,B CLNS Chul' man 56.84 124.89 Yakutia 64 A DBI Debin 62.34 150.75 Magadan 24 B EVES Evensk 61 .92 1 59.23 Magadan l B KHG Khandiga 62.65 1 3 5.56 Yakutia 9 A KROS Kirovskii 54.43 126.97 Amur 22 A KU- Kulu 61 .89 147.43 Magadan 1 B MGD Magadan 59.56 150.81 Magadan 2 B MOMR Moma 66.47 143.22 Yakutia 20 B MYA Miyakit 61 .41 152.09 Magadan 7 B NAY Naiba 70.85 130.73 Yakutia 7 B NKBS Nel'koba 61 .34 148.81 Magadan 26 B NZDS Nezhdanisk 62.50 139.06 Yakutia 18 A OMS Omsukchan 62.52 155.77 Maggan 3 B SAY Saidy 68.70 134.45 Yakutia 7 B SEY Seymchan 62.93 152.38 Magadan 40 B SNES Sinegor’e 62.09 1 50.52 Magadan 13 B SSY Sasyr’ 65.16 147.08 Yakutia 25 B SUUS Susuman 62.78 148.16 Magadan 37 B TBK Tabalakh 67.54 136.52 Yakutia 13 B TLl Tenkeli 70. 1 8 140.78 Yakutia 4 B TLAR Talaya 61 . 13 l 52.39 Magadan 9 B TNL Tonnel'nyi 56.29 1 13.35 Irkutsk A TI'Y Takhtoyamsk 60.20 1 54.68 Maggan 3 B TUG Tungurcha 57.28 1 2 1 .50 Yakutia 79 A ULZS Kamenistyi 65.41 144.83 Yakutia 2 B UNIS Ust’ Nera 64.57 143.23 Yakutia 79 B USZ Ust’ Nyukzha 56.56 121.59 Yakutia 133 AUURS Ust’ Urkima 55.30 123.22 Yakutia 85 AYAK Yakutia 62.03 129.68 Yakutia 6 AYUB Yubileniya 70.74 1 36.09 Yakutia 3 BZYR Zyryanka 65.72 149.82 Yakutia 5 B 1. The seismic station recorded events located in regions A and B denoted in Figure 1: the Southern Yakutia region (A) and the Magadan and Northern Yakutia regions (B). 29 Sea of Okhotsk 134'E Armor mu Ymm mm 0 A I m<10m . A I W11~Smtim A I mum-tbs ——— Ibhphbm Figure 7. Seismic stations used in this study. Labeled regions are the Southern Yakutia region (A) and the Magadan and Northern Yakutia regions (B). See Table 4 for more details. Size of symbols denotes amount of data available. 2.2. Phase Ratio Processing and Methodology The 544 events collected initially were separated into two groups: night-time earthquakes and day-time known explosions. The time window selected for the earthquake group was 11:00-22:59 UTC for the Southern Yakutia region and 9:00-20:59 30 UTC for the Magadan and Northern Yakutia regions. The time window for the explosion group was 23:00-10:59 UTC for the Southern Yakutia region and 21 :00-8z59 UTC for the Magadan and Northern Yakutia regions (Fig. 8). This separation was done because night time seismicity better reflects tectonic trends as most explosions are excluded (Mackey and Fujita, 2001; Mackey et al., 2003, Fig. 3). Only daytime events clearly identified in the bulletins as “explosions” are included in the database for the explosion group. Events with Pg and Sg phase amplitude information in all three components (Z, N-S, and E-W) for at least one station were selected. Events with amplitude information for Pg in Z and Sg in both N-S and E-W components were also selected. This selection was conducted because values ofK class could always able to be calculated using the nomogram of Rautian (1960) that requires at least amplitudes of the Z component for Pg and the horizontal components for Sg (Fig. 9). One advantage of records with amplitudes in all components is that it allows for the calculation and comparison of any possible combination of amplitude phase ratios as well as the full vector. This permitted the comparison of the performance of amplitude phase ratios using the exact same set of data. 31 III-I , Iln 0246810121416182022 Time (UTC) i!.1:*ZF§'Ela!aE¢§ a117, mars 30 25 20 2 4 6 810121416182022 Time(UTC) Figure 8. Distribution by time of the events used. A) The Southern Yakutia region. B) The Magadan and Northern Yakutia regions. 32 Number of events £9 Number of events 2: 3 Ap +As 10.0 0.2 0.1 0.01 3 10 20 100 300 500 1000 Distance (km) Figure 9. The Rautian (1960) nomogram used to calculate K class. Dashed red lines denote an example of a calculation of a 9.4 value ofK Class. From the amplitude information, the following five types of phase ratios were created: Pg(h) = (Pg/vs )2 + (Png )2 Sg(h) (Sgss )2 + (Sg 15W )2 2g Pg(2)=sz Sg(2) ng 33 P301): ‘/(Pg~s)2 +(ngw )2 58(2) (582) 4, Pg(z) = sz Sg ,/(Sg~s )2 +(Sg1-W )2 tor: \Rpgz )2 ‘1' (PgNS )2 '1' (Pgraw )2 5 Full Vec + (SgEW )2 \/(ng )2 + (SgNS )2 The five types of amplitude phase ratios were plotted against the energy class of the seismic shock (K) as calculated by each station. The database of selected events consisted of484 events (Fig. 10). These events are distributed in the two studied regions as follows: 147 earthquakes in the Southern Yakutia region and 90 earthquakes (6.1 < K < 12.8, 16 < A < 916 km) and 130 explosions (4.8 < K < 10.2, 9 < A < 752 km) in the Magadan and Northern Yakutia regions. From the amplitudes of these 484 events, 1164 Pg(z)/Sg(h) and 858 of the other four types of phase ratios were calculated. Table 5 summarizes the number of events and ratios per region and other parameters of the selected events. Appendix A shows the amplitudes collected for these events. 34 73° N :f' NORTH .gAMERlCAN f“ PLATE Figure 10. Location map of events used. Labeled regions are the Southern Yakutia region (A), the Magadan and Northern Yakutia regions (B), the Neryungri-Chulman mining region (NCMR), and Susuman miming region (SMR). 35 Table 5. Characteristics of the database of selected events Southern Yakutia Magadan and Northern Yakutia Earthquakes Explosions Earthquakes Explosions Number of events 147 117 90 130 Number of 323 251 370 220 Pg(z)/Sg(h) Number of ratios 259 206 255 138 (other four types) Distance range 10-900 km 6-423 km 16-916 km 9-752 km K class range 5.2-12.6 4.8-10.6 6.1-12.8 4.8-10.2 m, range “1 1.5-4.8 1.4-3.9 1.9.4.9 1.4-3.7 UTC time window 11:00-22:59 23:00-10:59 9:00-20:59 21 :00-8z59 1. Magnitude (mb) was calculated using the regional regression ofm, = 5.4+0.44 (K-14). 2.2.1. The Distance Correction In order to improve the separation between explosions and earthquakes and account for attenuation effects, a distance correction was applied to the five types of phase ratios previously calculated. Figure 11 shows an example ofthe procedure followed to calculate distance corrected phase ratios. The phase ratios of one explosion and one earthquake of the same size (K class 8) are highlighted in order to illustrate more clearly the effects of the correction. The distance correction was calculated using a linear regression for the earthquake data in an amplitude-phase-ratio vs. epicentral—distance graph. In this example, the linear regression is given by a slope of -0.0001 and a y- intercept of 0.2326 (Fig 11a). The coefficient of determination (R2) was also calculated. 36 y = -0.0001x + 0.2326 1.2 ,3 R2 = 0.0178 5 I. .- I) U) a ~Farthqtnkes 6°." -Epr8b8 1 019871114 019860115 0100200300400500600700800900 Distameflcm) B) C) 16 - 1.2 4 -l O' . I" gA ‘ ‘..‘ 5 g ,2,» a go ;' I I: 2 g _-0'_.. .,_: I); I“ 4 EV I..L:‘HII..I'3"1§'“1 I’N - .a_ a - -. T .04 . a I 7 8 9 10 11 I2 6 8 9 10 1] 12 E) 1.6 n, 1.2 8 ‘ - 0.8 z< 0.8 ‘ ..o'.; 6:: g . . . 0.4 ‘ I'.' M 0.4— . ‘.. 083:1... : ‘3 ' ' ' -3 0.0 * " a 00 '..-“W H)34 04 789101112 6 89101112 K-Class -Chss Figure 11. An example of a distance correction and network-average calculation for the Pg(h)/Sg(h) phase ratio of one earthquake and one explosion in the Southern Yakutia region. All of the Pg(h)/Sg(h) phase ratio for the region are also shown. See Table 6 for more details. A) Pg(h)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(h) phase ratio vs. K class. C) Pg(h)/Sg(h) phase ratio vs. K class after the application of the distance correction. D) Network-average Pg(h)/Sg(h) phase ratio vs. averaged K class. E) Network-averaged distance-corrected Pg(h)/Sg(h) phase ratio vs. averaged K class. 37 Network-Averaged 9 Pam/5201) 1’8 (h) / 58 (h) 3 3 The difference between this regression line and each phase ratio was added to the original phase ratio (Fig. 11b) to obtain a distance-corrected phase (DCP) ratio which was plotted against K class. The same correction based on the linear regression for the earthquakes was also applied to the explosions (Fig. 11c). Table 6 contains the data for the two events highlighted in Figure 11. It can be seen that the separation between the phase ratios from earthquakes is larger after the application of the distance correction. For this reason, the use of a distance correction improves the discriminating power of amplitude phase ratios as was seen in previous studies (Taylor, 1996; Hartse et al., 1997; Kim et al., 1997, and Mackey et al., 2005). Table 6. An example of a distance correction and network average calculation for the Pg(h)/Sg(h) phase ratio of one earthquake and one explosion in the Southern Yakutia region Event . P80!) P80!) P80?) P h — —— —— Date Station {)k‘ms‘g £85 32% Sg(h) Sg Sg.U-‘M‘Z u x :2 Number ofRatios per Event Sciuic Stat'nn Figure 13. Distribution ofphase ratios calculated from amplitude information in all components for the Southern Yakutia region. A) By time. B) By K class. C) By epicentral distance. D) By maximum number of ratios per event. B) By seismic station. 43 The time window used for the selection of explosions was 23:00-10:59 UTC, while the window for earthquakes was 11:00-22:59 (Fig. 13a). The majority ofthe ratios (~ 81%) were from events that have a K class between 7 and 10 (2.3 < m, < 3.6, Fig. 13b). Most of the ratios calculated from explosions (~ 66%) are located in the Neryungri -Chu1man mining region (56-58°N and 124-126°E, Fig. 10). The distribution of explosions by epicentral distance is concentrated (~ 42%) around 200 to 250 km, which is the distance between the Neryungri -Chulman region and seismic stations USZ, UURS, and TUG that recorded the majority of the events. In contrast to explosions, the epicentral distribution of earthquakes is more scattered and therefore has a more uniform distribution by epicentral distance, especially between 100 and 300 km (Fig 10 and 13c). Approximately 54% ofthe phase ratios calculated came from events with amplitude information in all components from at least three stations (Fig. 13d). This represents 41 earthquakes and 31 explosions that could be averaged over the network, as explained in the methodology. Since more amplitude information could be used to create Pg(z)/Sg(h) phase ratios, 51 earthquakes and 42 explosions could be averaged over the network for this specific ratio. Most of the phase ratios from both earthquakes and explosions were calculated from amplitudes recorded at stations USZ (~ 28%), UURS (~ 18%), TUG (~ 17%), CGD (~ 16%), and CLNS (~ 14%), as shown in Figure 13e. 2.3.1. Results There was a clear tendency of the amplitude ratios from explosions to have higher values than earthquakes in all cases. However, a considerable overlap between the two types of events was also noticed, especially in the cases where the phase ratios were not averaged over the network. 44 The results of the five types of amplitude ratios obtained are shown as follows: raw phase ratios in Figures 14 to 18, DCP ratios in Figures 19 to 23, NAP ratios in Figures 24-28, and NADCP ratios in Figures 29-33. Each figure describes one specific phase ratio using a plot ofthe amplitude ratio vs. K class, a histogram of the amplitude ratio, and two graphs showing the number and percentage of correctly classified events by the different values of the phase ratio. In order to compare the phase ratio before and after the application ofthe distance correction, a plot ofthe phase ratio vs. distance and the phase ratio vs. K class is also shown in the case of the DCP ratio (Fig. 19-23). Figure 34 shows a comparison of the values of all types of amplitude ratios. Table 8 provides the results of all phase ratio vs. distance regressions used for the Southern Yakutia region. As indicated by the low values ofthe coefficient of determination, there is a very weak phase ratio vs. distance trend (Fig 19a-23a). These linear regressions were used to calculate the distance-corrected phase ratios shown in Figures 19c-23c. Table 9 and Figure 35 contain averages and standard deviations of earthquake and explosion populations of all types of amplitude ratios calculated in the Southern Yakutia region. In all cases, the average of amplitude phase ratios for explosions is higher than earthquakes. As shown in Table 9, Pg(z)/Sg(h) amplitude ratios usually had the lowest standard deviation for both earthquakes and explosions compared to the rest phase of the amplitudes ratios calculated using the same technique. On the other hand, the Pg(h)/Sg(z) amplitude ratios always had the highest standard deviation for both types of events (Fig. 35). Both Pg(h)/Sg(h) and full vector phase ratios had similar standard deviations to the Pg(z)/Sg(h) phase ratios. 45 P: (h) / Seth) . 259 Earthques o 206 Eprs'nns I259 Earflnmkes I 206mm C) _.,_" r Y T I 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 Pg(h)/Sg(h)rlnseamio 80‘ 40« 20« o 4fi - .4, - . . . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pgh)/Sg(h)mmenstio — Earthquakes "—- Explosions — Total Figure 14. Pg(h)/Sg(h) raw phase ratio for the Southern Yakutia region. A) Pg(h)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 46 P8 (In) I 88 (h) 3 9 Number ofClassified Ratios Percentage ofClassified Ratios (explosionstimesl.26) 8 8 o—ou—NNUU assasssa§ _J. 9 10 11 K-Cbss P8 (2) / 88(2) O 259 Earthmkes 0 206 Explosions I259 Eartl'ques I 206 Eprs'nm C) 400 150 . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 20 0 * r T 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 mm / 83(2) PlIse Rat'n -- Earthquakes ._ Explosions — Total Figure 15. Pg(z)/Sg(z) raw phase ratio for the Southern Yakutia region. A) Pg(z)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 47 P: (z) / 38 (z) 2 Percentage ofClassified Ratiosg Number ofClassified Ratios (explosions times 1.26) — O 88 A) 3.2 2.8 4 2.43 i 2.0 z: 1.6« A 1 5 1.2: o'." 0.81 0.4 1 0”” ‘ gfifiQfiNQYWQfiQQQfifiQ 5 6 7 8 9 w n n n e27°°°°°°°°°°““2 V K-Chss Pym/8‘1) 0259 Earthques 0206 Eprs'nm I259Earthmkeal206Eprsbm C) 400 g 350j .2 ii 300« - A D g g 250: -' * 3- 2001 9. g 150l ° .8 g a 1001 ii 503 z . 0 4 a J 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 93111) / sgz) Pluse Ratio 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(h)/Sg(z)91nse Rat'n — Earthquakes -.._. Explosions — Total Figure 16. Pg(h)/Sg(z) raw phase ratio for the Southern Yakutia region. A) Pg(h)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 48 Percenuge ofClassified Ratios-g 8 § lb m m “NfiQfiNQYQQfiQQQfiNQ qucocoooocoo———— 5 6 7 8 9 m H D '3 é A V K-Chas P8 (2) / Sub) e323Earthques OZSIEme I323Earth1nkesl251fipre'nm 500 4 450 . 400 J 350 7‘ 300 . 250 . 200 j 150 . 100 . 50 i an. _-I.._._. 0 Y't 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(z)/ salt) Phase Ratio D) 100 E 80* 5.3.8.“? 39“?“ g 204 O... T T 7 1' 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 mm / 8111) Phase Ratio — Earthquakes *“ Explosions — Total Figure 17. Pg(z)/Sg(h) raw phase ratio for the Southern Yakutia region. A) Pg(z)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 49 Pam/Seal) 2: Q Number ofClassified Ratios (explosions times 1.29) A) 5678910111213 K-Chss - 259 Fartlnmkes o 206 Eprs'nrs I 259 Wes I206 Btpbs'nns C) 400 3so~ 300« 250: ‘ ' zoo~ 150i 1003 50« o 7 . T T T . ‘ . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 FulVectorPhaseRat'n D) 100 "* 20* 0 . s , , , QY -.._.—_._ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Ful Vector Pllse Ratio —- Earthquakes Explosions — Total Figure 18. Full vector raw phase ratio for the Southern Yakutia region. A) Full vector vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 50 Full Vector NumberofClassifiedRatios Percentage ofClassified Ratios (explosions times 1.26) A) 3.2 2.8 ~ y = -0.0001 x + 0.2326 8) A 2.4 3 53 2.0 « A E 1.6 5 a 1.2 « Q“ g.,,” 0.8: g 0.4 an 0.0 -0.4 . . . - . 0 200 400 600 800 1000 Distamefltm) . 259Wes o 206 Eprsiom D) 50 C) 3.2 2.8 ~ , ° 40 1 2.4 g 2.01 ° 3. o 3’ 3° 1 Q“ a. 20+ 2 ,0. 6'.“ b 0 Distance-Corrected Pg (h) / 5gb) I 259 Earthquakes I 206 Eprsiom E) 400 100 T"— i - 350 ~ f a a :9! 300 I " 250 < i g i g 200 § E; .5; 150 « . 100 3 ~— 50 E a. 0 e , . az o , -0.4 0,0 0.4 0.3 1.2 1.6 2_0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distariceecorrected Pgh) / Sgh) Distance-Corrected Pgh) / 8gb) -- Earthquakes ' Explosions — Total —- Earthquakes ...-._ Explosions — Total Figure 19. Pg(h)/Sg(h) DCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(h) phase ratio vs. K class. C) Pg(h)/Sg(h) DCP ratio vs. K class. D). Histogram. E) Number ofcorrectly classified events. F) Percentage of correctly classified events. 51 A) 3.2 B) 3.2 2.8 4 y=-0.0003x+0.3985 2.3 4 A 2.4 j 2.4 : a 2.0 t E 2.0 9 1.6 . g 1.6 1* E 1.2 4 § 1.2 1 E 0.8 4 :3 0.8 1 0.4 - ‘- 0.4 1 0.0 0.0 . -o,4 . . 4 . . . fl -0.4 . . . 02004006008001000 5678910111213 D'Itanee(km) K-Chs 0 259 Eanhqukes o 206 Eprs'nm D) 50 C) 3.2 40 2.8 . R 2.4 . , ' o . o 3' 30 O E E 2.0 ‘ O: . g 20 4 90 1.6 . U) 5 "2‘ mo“Hum-J I, 0.8 ‘ m ‘ —N—°—NMVWOFQQQfifiQ b 04* flfiéddddddddoc---- 0.0 4 3 A~0.4 D'Itame-Corrected Pg (z) / 8‘1) 5 6 7 8 9 10 ll 12 13 K-Chss I259 Earthmkes I 206 mum E) 400 F) 100 .. 350 .3 E 80 ~ 3 3m 1 .- ¢ N. . a "' 250 ‘ 2‘ § 60 .. ' .a 200 ‘ a: g 150 5° 40 1 ' 8 100 8 20 . 4.. 50 1 #3 z o T ' T A 0 W 1 Y Y -0.4 0.0 0.4 0.8 1.2 1.6 2.0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-Corrected Pg(z) / sgz) Distance-Comm! Pslz) / Sstz) -- Earthquakes ' Explosions -Total — Earthquakes * Explosions —Total Figure 20. Pg(z)/Sg(z) DCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(z) phase ratio vs. K class. C) Pg(z)/Sg(z) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 52 A) 3.6 B) e y = -0.0m3x + 0.5055 1: 2.8 1 ’: O. r” 9 en \ m a e 6'.“ 27. I. D) 50 C) 3.6 . 40 2.8 « go 3O 23 20 g 20 51° ' o. g 1.2 . ‘0 o'.“ 0 ‘ ' Q41 ~N—QfiNQYWQfiQQQfiflQ D géécccecccocc———X -0.4 - . . 1 V . Dmme-CorreetedP (h IS 2 5 6 7 8 9 10 ll 12 13 g ) d) K—Chss I259 Earthques I206 Explosions E) 400 F) a A 350 ‘ “g a g 300 ’ '3' .32 25° ? ' a j- 200 - "f; g . 150 j 3’ E 100 g ... :12z 50 '0 . . 1 . . . . . . . -0.4 0.0 0.4 0.8 1.2 1.6 2.0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-Corrected Path) / Sslz) Distance-Corrected Pg(h) / sgtz) — Earthquakes Explosions — Total -- Earthquakes Explosions — Total Figure 21. Pg(h)/Sg(z) DCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(z) phase ratio vs. K class. C) Pg(h)/Sg(z) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 53 3.2 ‘2 B) 3.2 2.8 1 y=-0.0001x+0.1971 2.8 A 2.44 5 A J," 5 \ N 3 1’ :3 3 6°.“ 0 5 6 7 8 910111213K-Chss 0323 EanlnukesOZSI Eprs'nm D) 50 40 (g1 a. E . o? ' T Durance-Corrected Pg (2) / 81h) 5 6 7 8 910111213 locust; I323Fart1qukesl251EprsbrI E) 500, 1 . A 4‘” '1 55 t . is 300 « 3U % 200 g- .n . z . 0 J - - . -_... . 0 . . . - -0.4 0.0 0.4 0.8 1.2 1.6 2-0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-CW Putz) / 580') Distance-Corrected Pg(z) / snot) --Earthquakes - . Eprsions —Tota1 —-Ea.rthquakes "r Embsiom —Total Figure 22. Pg(z)/Sg(h) DCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(h) phase ratio vs. K class. C) Pg(z)/Sg(h) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 54 E“: A) 3.2 B) 3.2 2.8 : y= -0.0002x+ 0.2661 23 : 2.4 1 2.4 j g 2.0 1 2.0 . 1.6 a 1.6 . > . a; 1.2 > 1.2 j u. 0.8 1 E 0.8 1 0.4 0.4 1 0.0 0.0 0 -0.4 . T . . . -0.4 . - . 02004006008001000 5678910111213 D'Itameflun) K-Chss O 259 Fartl'nukes O 206 Fprsnns D) 50 C) 40 , 0 33" 30 g a g 20 0 a. '3 2 10 '5 "' 0 b -~-Qfifinanehnqqfifln Nééccccccoooc—-~: Distance-Corrected FulVector I 259 Earthques 206 Explosions E) 400 F) 100 ~ 350 ‘ I8 59; 300 j E 80 "‘ 250 ‘ ' 3 60 . . g 5' a U . 2‘” T 0.6 340 t '8 . 150 g . g 100 ‘ 5 20 . 2 v 50 1 g0 - » r y - 0 . t . » - . 04 0.0 0.4 0.8 1.2 1.6 2.0 ~04 0-0 0-4 0-8 1-2 1.6 2.0 Distance-Corrected Fun Vector Distance-Corrected Full Vector —Earthquakes Explosions —Total --Earthquakes "*- Explosiona —Total Figure 23. Full vector DCP ratio for the Southern Yakutia Region. A) Full vector phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Full vector phase ratio vs. K class. C) Full vector DCP ratio vs. K class. D). Histogram. E) Number ofcorrectly classified events. F) Percentage ofcorrectly classified events. 55 A) 1.2 a) 60 O 1.04 50* E3 M E“ > ” g 0 <2 0-61 a 33° ' A “O .Q ‘35 0.41 0’09 n.20‘ 2a: 0.2 -“"*1’ .° 4' 101 4 I . 0,0 . . . . 0‘ ”aka ~Neqfifln109fiwaqfififi 5 6 7 8 9 1011 12 13 Neqcocccococc---- 3 A K-Chss Network-Amati 1’8 (h) / 81111) .41 Earrltqunkes o3l Explosions I41 Euutques I31 Eprs'nm C) 80 a? Q 60 j E; 50‘ j . 40 .1 95. 30f g 20 j V 10 . 0 4 t r ’P J z 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / 8%) D) 100 - 3% 80* .i .0. 8.: < 85 4° ‘3 20 . 8 D - -- OI. 0 f—v , Y , 7 r t 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Pub) / Sdh) - Earthquakes Explosions — Total Figure 24. Pg(h)/Sg01) NAP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage ofcorrectly classified events. 56 1.2 a) 60 1.0+ ° 50+ 0 O 0 0,8 1 .. . g 40 e . , 0.61 0 . g 30 O. 0.44 .$.e‘.e 201 0.2 O a” ' 10~ I 0.0 . - 0' “NfiQfiNQYWQEQQQfiNQ 5 6 7 8 9 1011 1213 g§q¢ococoeoco———-X V K'Ch“ Network-Amati Pg (2) / 8‘2) I4IEIl1lntlkca o31£xplo¢iom I41 Earthmkes I31Eprs'nns C) 80, .3 A 70 - a: 33 60 « ,3; g 50 g. 40. 955 30 . g 2'20 - V 10 . Z 0 . , , 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd sz) / sgz) D) 100 ‘- 1 E 804 e s 60‘, “5 '3 it? ‘° 3 20 . a. o , , . . . 4 . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd sz) / Sfiz) — Earthquakes Explosions — Total Figure 25. Pg(z)/Sg(z) NAP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(z) NAP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage ofcorrectly classified events. 57 Network-Averaged 2: 1’s (z) / Sr (2) 2.0 a) 60 I 501 1.6 , 404 1 1.2 «j E304 0.8 3 20« 0.4 1 l 10< 1 -- l or 0.0 5678910111213 K-Chas Netmrk-Averapd Pg (h) / sgz) o 41 Farthqukes o 31 Explosions I41 EartlmIkesI31 Eprs'nm 80 . - .g...----.I 7 v v v f 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd P3(1)) / Sfiz) 100 T 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / ng) —- Earthquakes * ' Explosions —Total Figure 26. Pg(h)/Sg(z) NAP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(z) NAP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage of correctly classified events. 58 Network-Averaged 2: Ps(h)/ 38(2) Percentage of Classified S Number ofClassified Ratios Q (explosionstimesl.32) Ratios N O 88 :33 '5’ ‘5’ 8 ‘6 8 5’ L ‘L A 1 L IJELAIAIA A) 1.2 a) 60 1.04 501 EE 0.8 3.40 > a? 00 < \ 0'6-l O 0 g 30 4 . 3 . ° 0 ° 0° g a 0.4 4 Q Q: are 20 . 1 O 10 z 02 34 . 0.0 4 - - . J or 5 6 7 8 910111213 K-Chss Network-Ampd Pg (2) / Sdh) - 51 Eudtques .42 Explosions I51 antiques I42 Eprs'nm C) 100 1 1 90 j '§ A 80 A r 2 a, 70 j 3" 60 3.1 .01 U 40 . s3 30‘ g 20 1 E». 104 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Pg2) / 8gb) D) 3 9.: 3 8 a e 2: g.,; C ii 0 m 10 , f Y . ..| 1' . _ ,1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Pgz) / Sfih) —- Earthquakes . "' Explosions — Total Figure 27. Pg(z)/Sg(h) NAP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage of correctly classified events. 59 A) 1.2 13) 60 1.0 . 0 50 i g? Mt . Em) <7 > 0.6 n .‘a , g 30 9" 20 q ~{.. .0... g E 0-4 1 z 0.24 :. 4 ‘fi' . 10 E 0 , a EL . 00 Try ~NfiQfiNflYWQEQQQfiflQ 5 6 7 8 9 10 11 12 13 399°°°°°°°°°°“"7§ V K-Chss Network-Averapd Ful Vector I41Eartlxluakes O31Exphs’ms I41 EarthquakesI31 Eprs'nm C) 80 f g A 70 2. 60 . 33w: 3- 401 95.53 30 .. g a 20 E 10 . z 0 . . e-.. -. ____-...._.....-...,-.. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Full Vector D) 100 - E 80 . g \ —- 60 't 28 . O '33 82” S g 20 + 0 a. 0 4 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Full Vector — Earthquakes Explosions — Total Figure 28. Full vector NAP ratio for the Southern Yakutia Region. A) Full vector NAP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage ofcorrectly classified events. 60 M 22 B)& O n. 1.81 5° 8 it 4°“ 3.0 . . O g 3 ”’1 ”.a , 20 r? 0.61 ‘10. «’.. 101 5 021 "fl ‘5' °' ' ' no ' I. 3 g I ~f‘!-.°."."!"l"."l‘9".°9°t°.—:N."1& 02 . quo ccccoooc———: 5 6 7 8 9 1011 1213 NetworkAverapdD'It-Correeted K-Chss Pam/Seth) 041 Earthquakes 031Eprsiom I41Eart1nmkes I31Eprs’nns C) 80‘ g 70‘ a, 60 . 50‘. .g 40.. _.m 1 551, 301 E 20: z 3 10: 0 . 1 1 . . . “ -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pgh) / sgh) NADCP D) 100 E- 801 3 601 4. 8 1 e240 go . 8 4 g 20 a. o . . T . . T -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pg(h) / spat) NADCP — Earthquakes Explosions — Total Figure 29. Pg(h)/Sg(h) NADCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(h) NADCP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage of correctly classified events. 61 A) 2.2 1 B) 60 m 1.8“ . 501 § [Al O . o 40‘ 2 no. §30« 1; 1.0 ’, ' o :3 . . o 3.20‘ g 0.6 2:...‘00. 104 lllllll III‘ ‘5 0.21 .: h'. I 0‘ . E ' “NfiQfiNQYWQEQQQfiNQ£2 - - gqqooaoeccoao———: s 6 7 s 9 no 11 12 13 V NetworkAveragedDbt-Con'ected K-Chu Pg (2) / 8‘2) .4: Earflques .31 mum I41 We. I31 Eprs'nm C) 80 3270‘ Egsw a. 4o: ' “5 E30; 20 ‘ £15, 10 4 z o . . . . -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz)/S§Z)NADCP D) 100 3g. 80 .3 .0. U “aé W404 g 20 a. 0 , . , - -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz) / 8‘2) NADCP — Earthquakes ' Explosions — Total Figure 30. Pg(z)/Sg(z) NADCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(z) NADCP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage of correctly classified events. 62 A) 3.0 v 13) 60 2.6 50 g 2.2~ . 3140 g 1.34 0 ° 0 §30‘ 3 1.4 0.; a. 20J ,2,“ 1.0i ° ‘OJI: . 13‘ . 3 0'6‘ 3%. . —~—°.-.r~1r'zv.va~qr~.°eo:q—m~z .0 0.2 . o ' N¢§co=ccccooo--—-n' 02 . ' -' ' 3 A s 6 7 s 9 1011 12 13 Nmau'e'mdm'cm'md Pam/83(2) K-Chss 041W“ 0315mm I41 Eutlxlukes I31Eprs'nm C) 80 .g 70- £860 .3; g 50 - "" y . 1 “5. 30‘ . v10 2 r . . . . . 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pg(h) / 39(2) NADCP D) 100 ‘ ,2 80‘ 9 36° 6'... 3°“ 3 204 o . O... 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pgh)/ Sdz) NADCP — Earthquakes - Explosions — Total Figure 31. Pg(h)/Sg(z) NADCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(z) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage ofcorrectly classified events. 63 1.4 ofl- 1.0 1 a < E 0.61 5 1 r3? ; (M4 :1 "NfiQfiNQYWQfiQQQfiQQ a.“ gqqcccoooccco———- .02 A 6789 10 ll 12 13 wammmmwmwfimmw K-Chss P8 (2) / Sdh) 05151111111131“: o42£1q3b¢bns I51 makes I42 12mm 100 y .3 A 90 ‘ a —1 80 .4 '83 m‘ E g 60 1 £2 50% / E3 5 40 . h— .— 23 N* 33% 20: S 3 10 . z 0 . . A -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz) / 8gb) NADCP D) 100 1 B 80 « E . .3. 60« U . “a E 40. so; . g 20 4 °‘ 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz)/Sgh) NADCP — Earthquakes Explosions — Total Figure 32. Pg(z)/Sg(h) NADCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(h) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 64 Pmmflp NW O 90 838 A) 2.2 B) 60 1.8 4 a 1.4 * . E 1.0 1 o 9 a. 0.6 * O ”O 0.2 ”21..“ r. v -0.2 f T NetworkAverapdet-Corrected 5 6 7 8 9 10 ll 12 I3 FulVector K-Chss O41Eartlnuakes 031Eprsiom I4l Earthquakes I3lFpra'nm C) o . . . I “ ' r . . -O.4 0.0 0.4 0.8 1.2 L6 2.0 Full Vector NADCP -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Full Vector NADCP — Earthquakes *' Explosions — Total Figure 33. Full vector NADCP ratio for the Southern Yakutia Region. A) Full vector NADCP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage ofcorrectly classified events. 65 Full Vector NADCP Percentage of Classified 9 Number ofClassified 3.2 5 = : 5 ’ 32 5. ° 1: ‘ 23* E ' O '3 2-31 3 3 ° . ° 0 o 2.4 : ‘ 5 2.4 :. ° ' o . 1 ‘ z E 3 J 1 g g . ‘ . : 0 . o g 1.6 . . o : . l E 3 i E L6 . ‘ o : 1.2 ' : 1.2 . g 0.8 i I I I 1 I ' ls I § 0.8 ‘ E ' 0.4 1 0'4 ‘ i l 0.0 E .3 0.0 i-0.4 ' 9 -0.4 ‘ Pail/83H Pal/Sal Pail/Sal Pal/58H Fullvector 9311/ng WWW Fullveetor C) 3'6 1 i E F :r m 3-6 T r : g 3.2 ‘ ° ° ° 3 E 3.2 3 g . 3 2.8 : : g 2.8 1 g 2 :31 5 s s 9 2.4 5 . , . 0 ‘3 ' 2'0 4 . o : 8 E 0 L6 1 ‘ : : 1.6 8 ' ' . 0.8 { g I I ‘ I I 5 E , <. 03 ' 0.4 ' | 5 | 5 ' ' 5 ' «g 0.4 U 00 : . : : ° .z ' . a ' s a 5 °-°* ° . ° . a ’ -0.4 2 -0.4 ' PIS P P/S P HFllector “Hg“ gZJSngHngZ/Sg “v PgH/SgHPgflSgZPgWSflPgZ/Sgflfullveemr Figure 34. Comparison ofthe amplitude ratios for the Southern Yakutia region. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP ratio. 66 Table 8. Distance linear regression results of amplitude phase ratios calculated from earthquakes in the Southern Yakutia region Phase Ratio Slope Y-intercept R2 Figure Reference M 00001 0.2326 0.0178 Fig 19a 580?) 13(1) 00003 0.3985 0.0294 Fig 20a 88(2) 39'.) -00003 0.5055 0.0161 Fig 21a 58(2) 55(1) -0.0001 0.1971 0.0214 Fig 22a 580:) Full vector -00002 0.2661 0.0305 Flg 23a R2 is the coefficient of determination. Values for R2 near 0 indicate a weak ratio vs. distance trend, while values approaching to one indicate a strong ratio vs. distance dependence. The critical values found for the discriminants applied to the Southern Yakutia region are shown in Table 10 and in Figure 36. For earthquake-explosion discrimination purposes, an amplitude phase ratio that is lower than the critical value is likely to be an earthquake while an amplitude phase ratio that is higher than the critical value is likely to be an explosion. Table 11 grades each discriminant tested as good, fair, and poor. The best earthquake-explosion discriminants found for the Southern Yakutia region are the full vector and the Pg(h)ng(h) NADCP ratios (Figs. 29 and 33) and the Pg(h)/Sg(h) NAP ratio (Fig. 24). These three discriminants were able to correctly classify as much as 89.1% ofthe ratios calculated. Other discriminants that produced good separations were 67 the Pg(z)/Sg(h) NADCP ratio (Fig. 32) and also the Pg(z)/Sg(h) (Fig. 27) and the full vector (Fig. 28) NAP ratios. . 6 ‘ 0.2 02 i i i f -o.4 ‘ : 3 : «0.4 " i 1 1 L 1 9.11/ng PgZJSgZ PgH/Sgl 1522ng Full vector W WwWM C) 2-0 E E s E D) 2.0 - 1.4 0.8 0.21 C 0.4 6.1 = = = 2 PIN/5B“ PSI/581 PgH/ng W Full vector W PW inH/ng PgZ/Sgfl Full vector Figure 35. Comparison ofamplitude ratios averages and standard deviations in the Southern Yakutia region. The average value is plotted with their arms representing the scatter in red for earthquakes and gray for explosions. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP ratio. 68 Network-Averaged finale Ratio 1—0—1 1—0—1 6 PC-t r—-.——1 1—0—1 .§ r—O—i t-—-O--—-1 1---¢-—4 . 1-4-1 4 1—0—1 Network-Averaged Dit-Correebd Distance-Corrected Phase Ratio Phase Ratio 6 9 9 . ea N ea rO-i h-m-v-O-m-w-t,.........+--~i r—O—H 3.. .._-... .. m.-. ’.‘m‘0-I-I4Q‘I‘OOI “when. j H——i 8..-... “a“...u...“ n “a. —-.-o- mum-auunooolon‘ ...-....................‘ r-O-i f—«O—w-a 1—0—1 in 6 w rum—mem—n-i Table 9. Average, standard deviation, and maximum and minimum values obtained for the amplitude ratios in the Southern Yakutia region T of Number tecmque T”? Of Type Of of ratios Average 0 Max Min. . rat1o event applied Pg(h)/Sg(h) Earthquakes 259 0.21 0.14 0.96 0.02 Explosions 206 0.39 0.24 1.52 0.03 Pg(z)/Sg(z) Earthquakes 259 0.34 0.27 1 .93 0.02 Explosions 206 0.50 0.31 1.80 0.03 Raw Phase Pg(h)/Sg(z) Earthquakes 259 0.44 0.39 2.79 0.03 Ratio Explosions 206 0.70 0.49 3.20 0.05 Pg(z)/Sg(h) Earthquakes 323 0.1 7 0.14 1.40 0.02 Explosions 251 0.31 0.23 1.29 0.00 Full vector Earthquakes 259 0.23 0.15 1.02 0.04 Explosions 206 0.42 0.24 1.47 0.04 Pg(h)/Sg(h) Earthquakes 259 0.21 0.28 1.73 -0.17 Explosions 206 0.57 0.49 2.83 -0.17 Pg(z)/Sg(z) Earthquakes 259 0.34 0.54 3.52 -0.29 Distance- Explosions 206 0.67 0.62 3 .31 -0.30 Pg(h)/Sg(z) Earthquakes 259 0.44 0.77 5.14 -0.37 Corrected Phase . (DCP) Ratio Explos1ons 206 0.97 0.98 5.98 -0.37 Pg(z)/Sg(h) Earthquakes 323 0. l 7 0.29 2.63 -0. 15 Explosions 25 1 0.46 0.46 2.43 -0.20 Full vector Earthquakes 259 0.23 0.29 1.83 -0. 16 Eiqilosions 206 0.60 0.48 2.70 -0.18 Pg(h)/Sg(h) Earthquakes 41 0.19 0.06 0.34 0.10 Explosions 31 0.42 0.17 1.09 0.13 Pg(z)/Sg(z) Earthquakes 41 0.32 0. l 5 0.79 0. 13 Explosions 31 0.56 0.20 1.07 0.18 Netwmk' Pg(h)/Sg(z) Earthquakes 41 0.38 0.16 0.78 0.17 Averaged Phase . (NAP) Ratio Explos1ons 31 0.73 0.30 1.71 0.22 Pg(z)/Sg(h) Earthquakes 5 1 0.15 0.06 0.31 0.06 Explosions 42 0.34 0.12 0.63 0.12 Full vector Earthquakes 41 0.22 0.07 0.3 8 0.10 Explosions 31 0.45 0.16 1.01 0.14 Pg(h)/Sg(h) Earthquakes 41 0.17 0.12 0.48 -0.01 Explosions 31 0.64 0.35 1.98 0.05 Pg(z)/Sg(z) Earthquakes 41 0.32 0.29 l .21 -0.03 ’23:"; Explosions 31 0.80 0.41 1.80 0.02 . g Pg(h)/Sg(z) Earthquakes 41 0.33 0.32 1.09 -0.10D1stance- .Corrected Phase Explos1ons 31 1.02 0.61 2.99 -0.02(NADCP) Ratio Pg(z)/Sg(h) Earthquakes 51 0.14 0.12 0.46 -0.04Explosions 42 0.54 0.25 1.10 0.09Full vector Earthquakes 41 0.20 0.13 0.53 -0.03Explosions 31 0.68 0.33 1.79 0.05 o is the standard deviation of the group of amplitude ratios. 69 Table 10. Critical values for the Southern Yakutia region Discrimant ”Kati?“ DCP Ratio NAP Ratio NADCP Ratio P5gg—“(h)) 0.25 0.29 0.32-0.33 0.41-0.46 Pg(2) — 0.31 0.32 0.44 0.44 58(2) Pg(h) —— 0.41 0.36 0.45 0.55 58(2) Pg(Z) —— 0.20 0.23 0.24 0.30-0.32 580:) Full vector 0.31 0.38 0.35 0.48 Table 11. Maximum percentage of correctly classified events and qualitative performance assignment for each discriminant in the Southern Yakutia region Discrimant ”Kati?” DCP Ratio NAP Ratio NADCP Ratio Pg0’) Poor Poor Good Good Sg(h) 71.3% 71.0% 89.1% 89.1% Pg(2) Poor Poor Fair Fair Sg(z) 65.4% 66.6% 78.5% 80.1% P807) Poor Poor Fair Fair 53(2) 69.4% 69.4% 81.3% 80.6% Pg(Z) Poor Poor Good Good Sg(h) 68.0% 68.6% 86.8% 86.8% F 11V t Poor Poor Good Good“ °° °’ 71.2% 71.6% 87.9% 89.1% 70 As seen in Figure 36, the critical value usually did not separate an equal number of earthquake and explosions. For example, Pg(h)/Sg(h) NADCP ratios correctly classified 89. 1% of the ratios calculated, separating 97.6% ofthe earthquakes and 80.6% ofthe explosions (Fig. 36d). On the other hand, other amplitude ratios separated the two groups of events equally, such as the Pg(h)/Sg(z) NADCP ratios that separated 80.6% of the earthquakes and 80.5% ofthe explosions (Fig. 36d). There was not a clear pattern that could be observed in the way that the amplitude ratios separated earthquakes and explosions. As expected from the weak phase ratio vs. distance dependence observed for this region, the distance correction did not have a significant effect on the performance ofthe phase ratios after its application. The percentage of correctly classified events by the amplitude ratios changed only by -0.3 to 1.2%, slightly improving the performance ofthe Pg(z)/Sg(z), Pg(z)/Sg(11), and the full vector phase ratios (Table 11). The critical values were also slightly affected by the distance correction. With the exception ofthe Pg(h)/Sg(z) ratio, critical values always increased alter the application ofthe distance correction (Table 10). More importantly, averaging the ratios over the network had a considerable effect on the performance of discriminants. The percentage of correctly classified events increased by 11.9 to 18.2% after averaging. The Pg(h)/Sg(h) and Pg(z)/Sg(h) NAP ratios had the largest change, followed by the full vector NAP ratios. The critical values also increased in all cases, as seen in Table 10. The NADCP ratios also significantly improved the performance. The critical values also increased in all cases with respect to the ratios before averaging (Table 10). 71 O § 888 8 scrum 3 03 Irma a 99915981330 9381119998 888351" 1509311 sonny 99119331330 98311991911 99918913 30 9831mm 72 .71.0 66.6 649. ‘ 0.31 0.41 0.36 l 023 1 038 ' l PgH/SgH PgZ/SgZ'PgH/Sgl PgZ/SgH Fullvec I’m/58H P871882 PSH/SEZlPSZ’SSfll Fullvec Criical Vahre, Crib“ V“ Phase Ratio Distance-Corrected Phase Ratio 89.7.9 D) “rm 89.180 8 613 8_o 86.8 1)'| 5 80 60 12 g 40 u- 20 5 0.32- 0.4 0.24 3° 0 0.33 0.41 10.44 0.55 030- 048 3 0.46 l , 0.32 ngH/Sgrr FgZ/ng‘FgH/ng PgZ/SgH Fullvec ng/sgulpgz/ngrgH/ng PgZ/SgH Fullwc 3 Critical Valre, Network Averaged Criical Valle, Network-Averaged Dist- Phase Ratio Corrected ITotal I Earthquakes I Explosions I Total I Earthquakes I Explosions Figure 36. Comparison of perfomiance ofthem litude ratios in the Southern Yakutia region. A) Raw phase ratio. B) DCP ratioa.mg) NAP ratio. D) NADCP ratio. 2.3.2. Phase Ratiosfor Individual Stations DCP ratios were analyzed separately for individual stations that had more than ten amplitude phase ratios for both earthquakes and explosions. In the Southern Yakutia region, only CGD, CLNS, TUG, USZ, and UURS fulfilled this requirement (Fig. l3e). The critical values, averages, and standard deviations found for each station were extremely variable, as seen in Table 12. The DCP ratios that performed the best were Pg(h)/Sg(h) for the CGD and CLNS, Pg(z)/Sg(h) for the TUG and UURS, and the full vector for the USZ station (Fig. 37, Appendix B). In general, the best separations were found in ratios calculated from amplitudes recorded at TUG, USZ, and UURS (Table 12). The Pg(z)/Sg(h) DCP ratio calculated from station TUG showed the best performance of all the amplitude ratios obtained from data recorded at individual stations. This DCP ratio was able to correctly classify 83.6% of the data used. This percentage was particularly high when compared to the performance ofthe Pg(z)/Sg(h) DCP on the whole region (69.0%). One interesting situation occurred at stations USZ and UURS, where all amplitude ratios performed similarly (70.1-76.4%). As seen in the previous section, Pg(z)/Sg(z) and Pg(h)/Sg(z) always performed poorly and very differently from the rest of the amplitude ratios (Table 11). On the other hand, stations CGD and CLNS performed poorly for all amplitude rations with the exception of the Pg(h)/Sg(h) DCP ratio, as shown in Table 12. 73 74 Table 12. Critical values, performances, and averages ofDCP calculated for individual stations in the Southern Yakutia region # (I) #12) Station P3(h)/Sg(h) Pam/58(2) Pam/53(1) Pg(Z)/Sg(h) Full Vector CGD 32 41 Performance (%) Poor (70.3%) Poor (58.0%) Poor (63.3%) Poor (59.4%) Poor (69.8%) Critical Value 0.36 0.22-0.25 0.75-0.81 0.10 0.36 Average earthquake (o) 0.24 (0.24) 0.53 (0.72) 0.98(1.l6) 0.10(0.14) 0.26 (0.25) Average explosion (o) 0.41 (0.26) 0.46 (0.41) 1.33 (1.22) 0.16 (0.23) 0.41 (0.27) CLNS 28 Performance (%) Poor (74.6%) Poor (57.8%) Poor (67.6%) Poor (60.7%) Poor (64.4%) Critical Value 0.19 0.30-0.33 0.21-0.27 0.30 0.21-0.22 Average earthquake (o) 0.12 (0.22) 0.46 (0.59) 0.25 (0.42) 0.20 (0.26) 0.21 (0.27) Average explosion (o) 0.33 (0.29) 0.54 (0.65) 0.62 (0.75) 0.33 (0.41) 0.40 (0.37) TUG 41 Performance (%) Fair (76.3%) Poor (69.7%) Poor (64.7%) Fair (83.6%) Fair (78.7%) Critical Value 0.45 0.51-0.54 0.14 0.23-0.24 0.50 Average earthquake (o) 0.27 (0.31) 0.38 (0.52) 0.77 (0.96) 0.12(0.l8) 0.28 (0.33) Average explosion (o) 0.76 (0.58) 0.76 (0.51) 1.06(1.15) 0.60 (0.39) 0.77 (0.52) USZ 81 52 Performance (%) Fair (75.6%) Fair (72.7%) Fair (75.6%) Fair (74.6%) Fair (76.1%) Critical Value 0.29 0.32 0.42 0.39 0.38-0.39 Average earthquake (o) 0.21 (0.25) 0.25 (0.45) 0.30 (0.50) 0.17 (0.22) 0.23 (0.26) Average explosion (o) 0.71 (0.55) 0.87 (0.79) 1.08 (2.35) 0.58 (0.51) 0.76 (0.57) UURS 40 Performance (%) Poor (70.1%) Poor (74.2%) Fair (75.4%) Fair (76.4%) Fair (74.8%) Critical Value 0.13-0.14 0.26 0.28 0.24-0.25 0.37 Average earthquake (o) 0.22 (0.30) 0.16 (0.28) 0.25 (0.65) 0.19 (0.26) 0.20 (0.23) Average explosion (o) 0.55 (0.47) 0.65 (0.54) 0.67 (0.53) 0.53 (0.49) 0.57 (0.42) ' number of ratios from earthquakes, 2 number of ratios from explosions, 0 standard deviation of the group of amplitude ratios TUG 2.2 USZ 2.2 g n. 1.8“ . . [-8 ’ .0 8 1.4 . g 1.4 A 0 ~ O... o. 1.01i 1'01 m . O o g a. 0.61 “0'83. > 0.61 v ‘ I Q = 6'.“ 0.2« 0.0%.-.. . 12 0.21o e . -0.2 . * u r 1 -02 - 5673910111213 5678910111213 O38Earthqrnkes 04151131088313 OSIEarthqukesOSZEprsbm UURS 2.2 . CLNS 2.2 1.8 1 1.8 7 D- 3 .. Q- < 8 1.44 .o g 1.4~ 5a? 1.0 .~ '. . Ean 1.0 o o o m . C I . 1 0.6 1 0.0. 2 0.6 1 ’9; . o. 5 3 .o$".o.‘ 5 4 ’..... a 0.2 Oa. 0‘ A? 0.2 O . . ‘ fl .' 1 . ‘ . « O . ~ ‘ -0.2 r . -02 . ark 5678910111213 5678910111213 K-Cluss K-Chss .45 Farthqmrtos 040Eprsiom o3613mhqu1tes o 28 Expme CGD 2.2 1.87 3.. 8 1.4~ A O 5 1.0 .° 0 a . 0 z 0.63 0$”° i 0.2~ ‘... “é.“ o -0.2 . 1 5 6 7 8 9 10 ll 12 13 K-Chss O 32 Earthquakes O 41 Eprsiom Figure 37. Best discriminants for individual stations in the Southern Yakutia region. The totality of the plots per station is shown in Appendix B. 75 2.4. Magadan and Northern Yakutia Amplitude information from 90 earthquakes (6.1 < K < 12.8, 16 < A < 916 km) and 130 explosions (4.8 < K < 10.2, 9 < A < 752 km) in the Magadan and Northern Yakutia regions was used to create 370 Pg(z)/Sg(h) phase ratios from earthquakes and 220 from explosions, and 255 phase ratios of the other four types from earthquakes and 138 from explosions (Table 5). The distribution of the amplitude ratios by time, K class, epicentral distance, and seismic station of the phase ratios calculated from stations with amplitude information in all components is shown in Figure 38. In the Magadan and Northern Yakutia regions, the time window used for the selection of explosions was 21 :00-8z59 UTC and was 9:00-20:59 for earthquakes (Fig. 38a). The distribution by K class was different for earthquakes and explosions with more earthquakes with a higher K class than explosions. Sixty-five percent ofthe phase ratios calculated for both earthquakes and explosions came from stations that recorded events with K class of 7.0-9.0 (Fig 38b). The epicentral distribution ofthe earthquakes was more scattered than that of explosions. There was a concentration of explosions in the Susuman mining region (coordinates 62.5-64°N and 146-149°E). Approximately 54% of the phase ratios were calculated fiom explosions located in this particular area. The epicentral distance distribution of explosions was biased by this fact, showing the greatest of the explosions recorded at distances of 200-250 km. The earthquakes showed a more uniform distribution by all of epicentral distances, especially in the range of 100-350 km (Fig. 38c). 76 A) 70 60 so 40 30 20 10 I255Eartmrnkee 0 Ell38FJtpbsbm 0 2 4 6 810121416182022 Tim(UTC) B) 70 -. C) 70 60. 60 50. 50 40‘ 40 30 3o 20 20 10; 10 o°$°232222 oaaaeaaaoaqoog lath-43%;; §§§§8§§§§§§§— Km §S§§§§ .888 MumnD-mllnvfi D) E170 60 50 40 30 20 10 0 “Ea—“ODDK<>Q m>>w>ag m ragga; gosszsxggggrfigaaaaaeEeEas.at Nunber ofRat'ns per Event Figure 38. Distribution of phase ratios calculated from amplitude information in all components for the Magadan and Northern Yakutia regions. A) By time. B) By K class. C) By epicentral distance. D) By maximum number of ratios per event. B) By seismic station. 77 A large number of the explosions (~38%) considered for the Magadan and Northern Yakutia regions had only one station with amplitude information on all components (Fig. 38d). Only 17 explosions and 47 earthquakes had more than three stations with amplitude information on the three components. In the case of the Pg(z)/Sg(h) 65 earthquakes and 24 explosions allowed the averaging over the network following the procedure explained in the methodology. As shown in Figure 38c, most of the phase ratios calculated (~ 55%) came from events recorded at UNIS (~ 21%), SUU (~ 10%), SEY (~ 10%), DBI (~ 6%), and NKB (7%). 2. 4.1. Results Even though there was overlap in the populations of ratios from explosions and earthquakes, there was a clear tendency of the amplitude ratios from explosions to have higher values than earthquakes, as in the Southern Yakutia region. The results of the five types of amplitude ratios obtained are shown as follows: raw phase ratios in Figures 39 to 43, DCP ratios in Figures 44 to 48, NAP ratios in Figures 49-53, and NADCP phase ratios in Figures 54-58. Each figure describes one specific phase ratio in the same way as was done for the Southern Yakutia region. A comparison of the values of all types of amplitude ratios is shown in Figure 59. The results of all phase ratio vs. distance regressions used for the Magadan and Northern Yakutia regions are shown in Table 13. The DCP ratios shown in Figures 44c- 48c were calculated using these linear regressions. The phase ratio vs. distance dependence was also found to be weak for this region. 78 1.0 0.8 0.6 1 0.4 1 0.2 1 0.0 P8 01) I Seth) O 255 Earthques 0138 Eprs'om I255 Emmi-rte. I138 Epre'nm 400 350 300 250 200‘ 150 100‘ 5 r0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Prim/Sdh) PhaseRatio D) 100 1 E 80 g 60 53 8 1 3 '5 ‘ a) 40 3 20 f: r v T J .— ,. -. .. ..-...T.....-.. _.T.. . 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pgh) / Sg(h) Phase Ratio — Earthquakes "— Explosions — Total Figure 39. Pg(h)/Sg(h) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage ofcorrectly classified events. 79 P800/ 58 (h) E: O Number ofClassified Ratios (explosions times 1.85) O 1.6 $0 1.4 1 12: 1.0 1 301 0.8 20‘ 0.6 : 0.4 j 10‘ 0.2 j 0.0 "fifiQfifiQVQQEQQQfiQfi 8 9 10 ll quococococcc———— A K-Chss P: (z) I Saz) o 255 Earthquee 0138 Explosions I255 Eartha-kc: I138 Eprebm C) 4004 350 éasoo 3‘250 33260 D 13.-3150 ,2 @100 55". z 50 'h— na 0 Y1 1 T 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(z) / 8142) Phase Ratio 100 - r fl r W T0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 sz) / Sdz) Phase Ratio -- Earthquakes ' '" Explosions — Total Figure 40. Pg(z)/Sg(z) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 80 3 P8 (2) / $8 (2) Percentage of Classified 9 Ratios N on O 8 8 C A l lkaala A 3.2 v 3) 50 2.8 1 2.4 7 2.0 7 1.6 q 1.2 7 0.8 7 0.4 7 0.0 - —O-- 9 to oc— 5 6 7 8 9 1011 1213 ggedeggégeggeaei’f A “‘0'“ Paco/81121 o 255 Earthques o 138 Epre'nns I255 Emmi-Ito. I138mm 400 50.. o . . a . . . . . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(h) / Sg(z) Phase Ratio D) 100- E 80 1 3 . o 8 60 7 _ _ ~53 . "0 ° a: 40 3° e. 0 , .— 1 , . T . r 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(h) / Sg(z) Phase Ratio — Earthquakes 77 77 Explosions '— Total Figure 41 . Pg(h)/Sg(z) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 81 1’: (h) / Se (2) E: Number ofClassified Ratios Q (explosions times 1.85) t—GNNM 80888 ‘8’ 11111.. L0 (L84 015) (14 (l2 . Ii 01)7 “NfiQfiNQYWQEQQQfiflQ 5 6 7 8 9 10 ll 12 13 fiq¢¢cccocccoe———— A 1’8 (z) / Sub) o 370 Emhques o 220 Explosiom I 370 Earthques I 220 Eprs'nm “a. ‘1 // mo 0 a j.afi a gum , , .. . . 01) (L2 (L41 015 (l8 11) 1J2 lu4 Pg(z) / Sgat) Phase Ratio 1)) 100 ' 1 g; 80 7 U) .3. 604 8 8 a“ O '5 ‘ ., a»: 40* ' § 20~ a. 0 1 r . I 7- ;... ...-,...-...-.,-..._..-_....-.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(z) / sgh) Phase Ratio —Earthquakes ' ‘ Explosions —' Total Figure 42. Pg(z)/Sg(h) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events . 82 P: (z) I Se (h) 2: hmmfldGdeNMN O hwhhmhmlfl) N U 8 8 sea A) 1.0 . B) 50 0.8% 40‘1 :.3. 0.6 . go: 30 J 0.4‘ g 20 0.2 '0‘ 0‘ 0.0 ~N—QfififitWQhQQQfiflfi 5 6 7 8 9 IO 11 1213 ”Q’q'ocococcooo—um-x - v KC” FullVector .255 Hardin-Res 0138 Embsions I255 makes-138 Eprtbm C) 400 g 350 {of 300 ‘ . g 2504 ... .a 2m q U «5.3 150 * 100 1 z . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 FullVectorPhnseRatio D) 100 E 80 8 360‘ ‘~ on. < 3°” 3 20 a. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 FullVectorPhaseRatio -- Earthquakes ' " Explosions — Total Figure 43. Full vector raw phase ratio for the Magadan and Northern Yakutia regions. A) Full vector vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 83 A) 2.0 B) 2.0 y=-lBO4x+0.2543 1.6 1.6 25 ~ .2. g z ' 1 ' . .. . .a_n 5.1 0.41 y °" . t o 0.0 -o,4. . -0.4 i 1 f T 02004006008001000 5678910111213 0mm K-Cb-s o 255 Eantqukes o 138 Eprsbns C) 2.0 D) 5° 16 ’ 40 E a 1.2 * § 30 * ‘3 0.8 ‘ g 20 . a 0.4 ‘ J E: 10 0.0 0 -0.4 . 5 6 7 8 9 10 ll 12 13 K-Chss Blame-Corrected Pg 01) / S‘h) IZSSWGIIBBEmhsm E) F)100 ‘— J— 7 . L -o.4 0.0 0.4 0.8 13 1.6 2.0 ' ‘ 41.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-0mm“d P50" ’ 39‘“) Distance-Corrected rah) / Seth) _We; Explosions —Total —We: Ewm —T0” Figure 44. Pg(h)/Sg(h) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data B) Pg(h)ng(h) phase ratio vs. K class. C) Pg(h)/Sg(h) DCP ratio vs. K class. D). Histogram ofthe Pg(h)/Sg(h) DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 84 NutterofChuifiedRuioc (explosions firms L85) _..—N ossss§§§§ ALL; PereentageofClusified Ratio: C '5' S 8 8 A) 3.2 B) 3.2 2.3 < y = IE~05x + 0.3797 2.84 1: 2.4 2.4 g 2.0 0 3 2.0« o g 1.64 . o . 0 E 2 l2‘ ' ' $ n'.‘ ‘3 0.11] o ’ " ‘ ' 0~00 o " 0.41 ‘ . 0.0« 0 ° -0.4 5 6 7 8 9 I0 ll l2 l3 K-Chsl D) so C) 40.. 2.0 i 0 Diane-Corrected Pg(fi/S‘z) 56789|0lll2|3 K-Chss IZSSWIIRW ______4——w ~0.4 0.0 0.4 0.8 1.2 1.6 2.0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-Corrected sz) / 812) D'utance-Corrected sz) / Sdz) —- Earthquakes ' Eprsbns —Total — Earthquakes "“- Explosions — Total Figure 45. Pg(z)/Sg(z) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(z) phase ratio vs. K class. C) Pg(z)/Sg(z) DCP ratio vs. K class. D). Histogram ofthe Pg(z)/Sg(z) DCP ratio. E) Number ofcorrectly classified events. F) Percentage ofcorrectly classified events. 85 m NullberofChnified Ratios V (explocinmt'na LBS) oa§§§§§§§ PI (1)/ S: (2) pmofClassified 3' Ratios _ O 8888 A) 3.6 13) 36 . y = 3E-05x + 0.4633 A 2.s< 3 an E if an A m5 1 a ‘3 fl- 5 67 8910111213 K-Chss c) 3.6 2.8 E a 2.0 (I) g 12« E 1 a 0.44 -o.4 . . ' 5 6 7 s 9 1o 11 12 13 mcmwflwnm/s‘” K-Chss IZSSEnrtlmfltesIUBEprsm' a 350) 80 a: a 300+W’ . g g 250 1 . . so w A U- 200 “6-5 ~ '3. 150 « 4° g 100 20 0 Z 50 1 o 0 . an - C -o.4 0.0 0.4 0-8 1-2 1-6 2-0 -o.4 0.0 0.4 0.8 1.2 1.6 2.0 Diane-Corrected Pdh) / SKI) Distance-Corrected Pub) / Sdz) —Earthquakes Explosions —Total —Euthquakes Explosions —Total Figure 46. Pg(h)/Sg(z) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(z) phase ratio vs. K class. C) Pg(h)/Sg(z) DCP ratio vs. K class. D). Histogram of the Pg(h)/Sg(z) DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 86 A) 2.0 « y= -o.ooozx+ 0.243 B) 2'0 . 1.63 1.6-1 g . ‘2’. .32 1.21 O E «3 0.3« a i 0.4 '1 n- 1 0.0 ~ Y 7 r ’0.4 r 1 Y 1 o 200 400 600 300 1000 .00“) 5678910111213 um“ K-Chu o Momma-1m . 220 mum D) 50 C) 2.0 Mme-Corrected Pg (2) / 8‘11) 5 6 78 910111213 K-Chss I 370 Makes a220 Eprc'om E) soo~— .aA soo~ 8 "‘4 4001 £1... as g 200‘ £35 1004 z . o , . , . . . 0 . Y C Y 7 AW -o.4 0.0 0.4 0.8 1.2 1.6 2.0 .0.4 0.0 0.4 0.3 1.2 1.6 2.0 Disuncc-CmectedezHSath) Dime-Corrected Pun/s11.) -Eanhqunkes “Embsions -Total *Eumquakeu 13mm -Total Figure 47. Pg(z)/Sg(h) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(h) phase ratio vs. K class. C) Pg(z)/Sg(h) DCP ratio vs. K class. D). Histogram ofthe Pg(z)/Sg(h) DCP ratio. E) Number ofcorrectly classified events. F) Percentage of correctly classified events. 87 Distance-Corrected P: (z) / S: (h) A) 2.0 ' 3) 1 6 y = -0.0001x + 0.2934 3 E -0.4 . T - 1 0 200 400 600 800 1000 11 12 13 D'stanceflrm) 0 255 Eartlnmkes 0 138 Eprsiom C) 5678910111123 K-Chss I255 Emlmnkes I138 Eprs'nm _/">\ -0.4 0.0 0.4 0.8 1.2 1.6 2.0 -o.4 0.0 0.4 0.8 1.2 1.6 2.0 Dime-Corrected Full Vector DitancevCon'ected Full Vector — Earthquakes Explosions — Total —Earthquakes _-. Explosions —Total Figure 48. Full vector DCP ratio for the Magadan and Northern Yakutia regions. A) Full vector phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Full vector phase ratio vs. K class. C) Full vector DCP ratio vs. K class. D). Histogram of the Full vector DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 88 NurterofChnifledlt-tioc Distance-Corrected (explosiorut'meclfiS) — u—- N 1..) Full Vector 3» o88‘6 2 § § O § L J. L4+ Percentage ofClmified 3 Full Vector Ratio: O 8 8 8 A A 2 A fifl—mw 1.2 B) 1.0 * 0.8 7 o 0.6 « . o o . 5" 0.4 « 0.2 .7.“ 1;... j V j—NfiQfiNQYWQfiQQQfiNQ 00 qucoceccccec—-—~ 5678910111213 " “Ch“ Netwrk-Averapd Pg (11) / 8‘11) 047 Earflnmkes 017Eprs'nns I47 Bartl‘ques I17Eprsbm C) 90 a 80 a: if 70 1 Q 60‘ 3.5 50 1 - _f .9. 40 o ' 30 a 1; g 20 « 2 v 10 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / Sdh) D) 100 - E 80 3 6o 1 ‘. 95.8. 1 0 ii 40 ‘ M g . 3 20 3 o . n' 0 m V 7 ' " .' ' r 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Pgh) / Sdh) — Earthquakes Explosions — Total Figure 49. NAP Pg(h)/Sg(h) NAP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 89 3.: Network-Avenged P: (h) / S: 01) Percentage oSBSSBS 1.2 13) 60 1.01 50‘ 0.8 . 6° 840' . .0 a... 0 g 30* 0.61 o '0 .- . oo ‘ a. 20 * 0.4 ‘ ‘ .~ O 10. . 0 ‘k ‘.‘0 0.21 “d. o 04 1 . 1 —~—9=l 0.2« ‘.filgeo , . L2 . O. O 0 - 'NfiQfiQQYWQEQQQfiQG 2 r a e fiq qococooccco———— $ T A v 67891011 12 13 Network Averapd Dist-Corrected K-Chss Fuler I 47 Eanlnmkes 017 anrbs’nns I47 Earthquakes I 17 Explosiors C) 90 .§ 30' as 70 i 7' 60: i? 5‘" u 40? ‘8- 307 €3.20 *7 10 7 z 0 f -0.4 0.0 0.4 0.8 1.2 1.6 2.0 FullVectorNADCP D) 100 E 80 3 60 8 s . 3§m~ a: 5's" 3 20« :13 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 FullVectorNADCP —Earthquakes Explosions—Total Figure 58. Full vector NADCP ratio for the Magadan and Northern Yakutia regions. A) Full vector NADCP ratio vs. K class. B) Histogram. C) Number ofcorrectly classified events. D) Percentage of correctly classified events. 98 A) 4.4 B) 4.4 3.6 ' g 3.67 I 2.8 I 2.0 O . o I. I 0.4 0.4 J;III 1 -0.4 i «0.4 123117ng PgZ/SgZWW Fullvector W 71r——-7 — —- —-r---——- 77- 4.4 I 3.6 2.8 1 I 2.0 I I I I I I I I I I I I I 0.4 7 I III D lII .4 Y PgH/Sgfl PgZJSgZ 1111/ng rwsw Full vector PgH/SgH 932/332 PgH/SgZ PgZ/SgH Full vector Figure 59. Comparison of amplitude ratios in the Magadan and Northern Yakutia regions. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP phase ratio. 99 9 Network-Averqed Phase Ratio lm'lm. s!" & Network-Averaged Dist-Correced 9 Plusellatio b .° PPS-'9 b 5 OUO‘b O... O Table 13. Distance linear regression results of amplitude phase ratios calculated from earthquakes in the Magadan and Northern Yakutia regions Phase Ratio Slope Y-intercept R2 Figure Reference M -00001 0.2543 0.01 Fig. 44a Sg(h) 5592 0.00001 0.3797 0.00003 Fig. 45a Sg(2) 513(1). 0.00003 0.4633 0.0001 Fig. 46a Sg(2) £82 00002 0.2243 0.0296 Fig. 47a Sg(h) Fun vector -0.0001 0.2934 0.0149 Fig. 48a R2 is the coefficient of determination. Values for R2 near 0 indicate a weak ratio vs. distance trend, while values approaching to one indicate a strong ratio vs. distance dependence. Table 14 and Figure 60 show the averages and standard deviations of the earthquake and explosion groups of all types of amplitude ratios calculated for the Magadan and Northern Yakutia regions. As observed in the Southern Yakutia region, the Pg(h)/Sg(z) amplitude ratio always had the largest standard deviation when compared to the rest of the amplitude ratios calculated using the same technique. In contrast, the Pg(z)/Sg(h) and Pg(h)/Sg(h) amplitude ratios usually had the smallest standard deviation compared to the rest of amplitude ratios calculated using the same technique (Fig. 60). 100 Table 14. Average, standard deviation, and maximum and minimum values obtained for the amplitude ratios in the Magadan and Northern Yakutia regions T of Number tecfiiique Type Of Type Of of ratios Average 0 Max. Min. applied ratlo event Pg(h)/Sg(h) Earthquakes 255 0.23 0.13 0.73 0.03 Explosions 138 0.3 7 0.17 0.96 0.05 Pg(z)/Sg(z) Earthquakes 255 0.38 0.30 2.00 0.02 Explosions 138 0.55 0.38 3.50 0.03 Raw Phase Pg(h)/Sg(z) Earthquakes 255 0.47 0.36 2.20 0.04 Ratio Explosions l3 8 0.67 0.51 4.00 0.1 l Pg(z)/Sg(h) Earthquakes 3 70 0.20 0.14 l .20 0.01 Explosions 220 0.31 0.17 0.86 0.00 Full vector Earthquakes 255 0.26 0.14 0.82 0.04 Explosions 138 0.41 0.17 0.95 0.05 Pg(h)/Sg(h) Earthquakes 255 0.23 0.26 1.25 -0. l 8 Explosions 138 0.51 0.34 1.67 -0.15 Pg(z)/Sg(z) Earthquakes 255 0.38 0.59 3.61 -0.34 . Explosions 138 0.71 0.76 6.62 -0.32 D'S‘ance' Pg(h)/Sg(z) Earthmtakes 255 0.47 0.72 3.91 -039 Corrected Phase . (DCP) Ratio Explosmns 138 0.88 1.02 7.53 -0.24 Pg(z)/Sg(h) Earthquakes 370 0.20 0.27 2.18 -0.20 Explosions 220 0.42 0.34 1 .49 -0.24 Full vector Earthquakes 255 0.26 0.28 1.39 -0.20 Explosions 138 0.56 0.34 1.65 -0.18 Pg(h)/Sg(h) Earthquakes 47 0.22 0.06 0.37 0.09 Explosions 17 0.44 0.1 1 0.66 0.28 Pg(z)/Sg(z) Earthquakes 47 0.36 0.13 0.73 0.14 Explosions 17 0.59 0.17 0.87 0.29 “mm" P h)/S (2) Earth uakes 47 0 44 0 15 0 85 o 17 Averaged Phase g( g q. ' ' ' ' (NAP) Ratio Explosmns 17 0.78 0.29 1.47 0.36 Pg(z)/Sg(h) Earthquakes 65 0.19 0.07 0.48 0.08 Explosions 24 0.34 0.07 0.49 0.22 Full vector Earthquakes 47 0.25 0.06 0.40 0. l 3 Explosions 17 0.48 0.1 l 0.67 0.31 Pg(h)/Sg(h) Earthquakes 47 0.21 0.12 0.5 l -0.04 Explosions 17 0.65 0.21 1.08 0.34 Pg(z)/Sg(z) Earthquakes 47 0.34 0.25 1 .08 -0.09 232:2”; Explosions 17 0.81 0.33 1.36 0.20 Distal]; Pg(h)/Sg(z) Earthquakes 47 0.41 0.31 1.22 -0.12Corrected Phase Explosions 17 1.10 0.58 2.47 0.24(NADCP) Ratio Pg(z)/Sg(h) Earthquakes 65 0.19 0.13 0.74 -0.06Explosmns 24 0.46 0.15 0.76 0.22Full vector Earthquakes 47 0.24 0.13 0.53 0.00Explosions l 7 0.69 0.23 1 .06 0.36 o is the standard deviation of the group of amplitude ratios. 101 E 7w: A) 2.0 :fi j B) 2.0 :r 5 ° 3 ' 1 a : g 1.4 . I 0 g 1.4 7 E 1r g t 2 '3 1 g 1 i"? ~- ' if? ° 1 i "' g . : 7r 1 , < 9: 1 1 T 9 ‘ - 5 9 L z agl{ .1. t 1‘} : £ .1. "'21:”{i'itiéi E . L 1 . i .04 '0" Pall/83H 733381 W82W Full vector PgH/SgH 1521ng Pgl-l/ng PgZ/SgH Fullvector C) 2.0, E o) 2.0, . .1. g 1.4 . E 1.4 1 E 0.8 i i 30.8 { Y 1 1 <. I" ‘ i E 1 ~ i .1. i . 1 1 15 5 g < E .-04 2 41.4 PsH/Ssfl Pal/$31 PsH/Ssl PsZ/SsH Full vector 9.11/ng W 113117ng PgZ/Sgl-l Full vector Figure 60. Comparison ofamplitude ratios averages and standard deviations in the Magadan and Northern Yakutia regions. The average value is plotted with their arms representing the scatter in red for earthquakes and gray for explosions. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP phase ratio. The critical values found for the discriminants applied to the Magadan and Northern Yakutia regions are shown in Table 15 and in Figure 61. The best earthquake- explosion discriminants found for this region were the full vector NAP ratio and also the Pg(h)/Sg(h) and full vector NADCP ratio (Figs. 53, 54, and 58). These discriminants allows for the separation of 91 .7% ofthe ratios that were calculated. Three more amplitude ratios were categorized as good discriminants with 86.1-91.0 % ofthe ratios 102 correctly classified. These ratios were the Pg(z)/Sg(h) NADCP and also the Pg(h)/Sg(h) and Pg(z)/Sg(h) NAP ratios (Tables 15 and 16, Figs. 49, 52, and 57). Table 15. Critical values for the Magadan and Northern Yakutia regions Discrimant Phase Ratio DCP Ratio NAP Ratio NADCP Ratio Pg(h) —- 0.23 0.33 0.30-0.32 0.35 5301) Pg(2) — 0.33 0.27-0.28 0.55-0.58 0.78-0.79 Sg(2) Pg(h) —— 0.48 0.45 0.68-0.75 0.87-1.03 Sg(2) Pg(Z) — 0.18 0.15 0.23 0.29 52:01) Full vector 0.27 0.25 0.33 0.37-0.39 Table 16. Maximum percentage of correctly classified events and qualitative performance assignment for each discriminant in the Magadan and Northern Yakutia regions Discrimant Phase Ratio DCP Ratio NAP Ratio NADCP Ratio Pg(’7) Poor Poor Good Good Sg(h) 70.7% 70.0% 91.0% 91.7% Pg(2) Poor Poor Fair Fair Sg(z) 63.8% 63.8% 78.1% 79.1% Pg(’7) Poor Poor Fair Fair Sg(z) 62.8% 63.3% 80.2% 80.2% Pg(2) Poor Poor Good Good Sg(h) 67.0% 66.0% 86.4% 86.1% Full vector Poor Poor Good Good70.9% 70.8% 91.7% 91.7% 103 §883° sorta}; E pogrssargJO simmered 301ml 110911381310ammo §883° some; scrim :5 0991891310 9381mm 0A9991881330 9331me 104 100 80 60 40 201 0 0.27- 0.45 01530255 0.23 0.33 0.48 0.18 07.2 0.28 ‘ l gH/SgH; PgZ/SgZ‘PgH/SgZ PgZ/SgH Fullvec PgH/SgH PgZ/SgZ PgH/SgZ PgZ/SgHl Fullvec ‘_ Critical Value, Critical Value, Phase Ratio Distance-Corrected Phase Ratio9 100 91.7 91.0 802 17' 408 9,.9 030-.32 0.55- 0.68- 058 0.75 23‘0 0.35 0.78- 0.87- ‘ 022.9 0.37- 079 ; 1.03 1 0.39 ‘PgH/SgH PgZ/SgZ PgH/SgZ‘1PgZ/SgH1 Fullwc PgH/SgH PgZ/SgZ I PgH/SgZ. PgZ/SgH Fullvec Critical Value, Network Averaged Critical Vahe, Network-Averaged Dist- Phase Ratio Corrected ITotal I Earthquakes I Explosions I Total I Earthquakes I Explosions Fi 61. Comparison of the performance of the amplitude ratios in the Ma and Northern Yakutia regions. gure A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) N Pphase ratio. The distance correction did not have a significant effect on the performance ofthe phase ratios afier its application. The percentage of correctly classified events changed by -1.0 to 0.5%. The critical values slightly decreased for the Pg(z)/Sg(z), Pg(h)/Sg(z), Pg(z)/Sg(h), and full vector phase ratios and increased for P(h)/Sg(h) phase ratios (Table 15). Averaging over the network again had a significant effect on the performance of the discriminants. The percentage of correctly classified events by the amplitude ratios increased by 14.3 to 20.8% afier averaging. The full vector phase ratio had the most positive effect, followed by Pg(z)/Sg(h) phase ratio and then the Pg(h)/Sg(h) phase ratio (Table 16). The critical values increased for all types of phase ratios after averaging the ratios over the network, as seen in Table 15. The average over the network ofthe DCP ratios also always produced an increase in the critical values. 2.4.2. Phase Ratiosfor Individual Stations Amplitude phase ratios obtained from individual stations were plotted against K class when more than ten amplitude phase ratios for both earthquakes and explosions were available for each station (Fig 38e). For the Magadan and Northern Yakutia region these stations were DBI, NKB, SEY, SUU, and UNIS. The DCP ratios that performed the best were Pg(h)/Sg(h) for DBI, SUU, and UNIS and Pg(z)/Sg(h) for NKB and SEY (Fig 62, Appendix B). Due to the lack of data, the critical values and performance calculations for DBI and NKB stations are considered unreliable. 105 The critical values, averages, and standard deviations calculated were extremely variable, as seen in Table 17. There was not a pattern in the critical values or performance that could be observed for all types of amplitude ratios analyzed in this region. One notable observation situation was that the Pg(z)/Sg(z) and Pg(h)/Sg(z) DCP ratios showed a fair performance that was in some cases better than that of the other three types of amplitude ratios. Using all of the data collected for the region, the two aforementioned amplitude ratios performed more poorly and differently than the other three amplitude ratios calculated. 106 107 Table 17. Critical values, performances, averages, and standard deviations ofDCP calculated for individual stations in the Magadan and Northern Yakutia regions # (I) #(2) Station Pg(h)/Sg(h) Pg(Z)/Sg(z) Pg(|l)/Sg(il) Pg(Z)/Sg(h) Full Vector DBI 14 10 Performance (%) Fair (75.7%) Poor (72.9%) Poor (70.7%) Poor (72.1%) Poor (74.3%) Critical Value 0.26-0.29 1.45-1.60 0.46-0.86 0.26-0.32 0.55-0.56 Average earthquake (o) 0.27 (0.21) 0.69 (0.75) 0.59 (0.64) 0.31 (0.28) 0.36 (0.30) Average explosion (o) 0.53 (0.26) 1.07 (0.69) 1.07 (0.81) 0.57 (0.41) 0.69 (0.39) NKB Performance (%) Poor (73.9%) Fair (80.4%) Poor (74.3%) Fair (83.9%) Fair (81.1%) Critical Value 0.45-0.50 0.91-0.96 0.78-0.86 0.40 0.52-0.53 Average earthquake (o) 0.35 (0.30) 0.52 (0.53) 1.04 (0.92) 0.15(0.17) 0.37 (0.29) Average explosion (o) 0.68 (0.27) 1.28 (0.51) 1.48 (0.73) 0.62 (0.33) 0.82 (0.31) SEY 26 Performance (%) Fair (75.0%) Fair (77.1%) Fair (73.1%) Fair (79.4%) Fair (77.1%) Critical Value 0.13-0.16 0.23-0.38 0.10—0.15 0.21-0.23 0.25-0.27 Average earthquake (o) 0.21 (0.23) 0.20 (0.32) 0.39 (0.78) 0.14(0.16) 0.22 (0.23) Average explosion (c) 0.40 (0.16) 0.51 (0.27) 0.50 (0.27) 0.40 (0.20) 0.46 (0.18) SUU Performance (%) Fair (81.4%) Poor (66.9%) Poor (72.5%) Poor (69.7%) Fair (78.6%) Critical Value 0.52 0.17-0.20 0.44-0.48 0.14 0.48 Average earthquake (c) 0.24 (0.19) 0.40 (0.49) 0.60 (0.71) 0.l6(0.17) 0.26 (0.22) Average explosion (o) 0.79 (0.42) 0.62 (0.50) 1.20 (0.64) 0.40 (0.27) 0.73 (0.38) 46 33 Performance (%) Poor (68.9%) Poor (59.8%) Poor (67.6%) Poor (67.6%) Poor (67.2%) Critical Value 0.18-0.19 -0.02 0.10-0.11 0.14 0.21-0.22 Average earthquake (o) 0.26 (0.27) 0.20 (0.43) 0.31 (0.65) 0.18 (0.23) 0.24 (0.27) Average explosion (o) 0.41 (0.27) 0.31 (0.54) 0.49 (0.96) 0.28 (0.23) 0.36 (0.25) ' number of ratios from earthquakes, 2 number of ratios from explosions, a standard deviation of the group of amplitude ratios UN 1.8 NKBS 2.2 1.4 4 a. 1.8 '1 8 1.44 . 1.07 o. . a 4 o , 1.07 0.6 1 . £..::$ g ... . . Z 05* 0! fi ’0: 3.00.. '5 “ 0 o 0.21 ‘ en 02‘ a. ' . I. ca -0.2 -0.2 . i r . T 5678910111213 5678910111213 K-Chss K-Chss . 46Earthques . 33 Explosbns . 14 Eartlnmkes . 12 Eprsbns 1.8 SEY 1.8 O 1.4“ o 1.4‘ . ° ‘ g 1.074 ,0. 5A 1,01 . no "-6. . 3..0. 1.. a 0.6: ° ;. -i 0.2 ..’..0’0: ‘5.1.".!“ 0,2 -4i .... .1 .0.2 . .02 . . ' 5678910111213 5678910111213 K-Class K-Chss . 18 Earthques o19r-zxp1osiom . 26Earthquakes o 14 Eprs'nm DBI 1.8 a. 1.4 ‘ 8 g 1.0‘ . co 9 ' (<3 0.6‘ . g. 0. g 02 4 v . O a? O « o ‘. '0 -0.2 1 5 6 7 8 9 10 11 12 13 K-Chss 0 l4 Earthquakes O 10 Eprs'nns Figure 62. Best discriminants for individual stations in the Magadan and Northern Yakutia regions. The totality of the plots per station is shown in Appendix B. 108 P8 (bl/5801) DCP é Pam/SsGIWCP U) 2.5. Comparison between Regions There was a tendency of explosions to have higher values than earthquakes for the five types of amplitude ratios explored in both of the two regions studied. However, an overlap between the two types of events was also observed for all the ratios calculated. The amplitude ratios that exhibited the best performance as earthquake-explosion discriminants were the same for the two regions: the Pg(h)/Sg(h), Pg(z)/Sg(h), and the full vector NAP ratios and the Pg(h)/Sgar), Pg(z)/Sg(h), and the full vector NADCP phase ratios (Tables 10 and 15). The percentage of correctly classified ratios that these types of discriminants produced was 86.8-89. 1% for the Southern Yakutia region and 86.1-91.7% for the Magadan and Northern Yakutia regions. For the two regions, Pg(z)/Sg(z) and Pg(h)/Sg(z) performed similarly, but always with a percentage of correctly classified ratios considerably lower than that of the other three types of amplitude ratios. The critical values for the amplitudes ratios of Pg(h)/Sg(h), Pg(z)/Sg(h), and full vector amplitude ratios were very similar for the two regions (Table 10 and 15, Fig. 63 a,d,e). On the other hand, the Pg(z)/Sg(z) and Pg(h)/Sg(z) phase ratios showed very distinct critical values for the two regions. These two types of amplitude ratios exhibited the worst performance for the two regions, and both ratios involved the amplitude ofthe Sg phase in the vertical component in the denominator. 109 l .0 1.0 0.9 0.9 0.8 1 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 1 0.2 0.1 0.1 DCP NAP NADCP l .0 l .0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 ' 0.6* 0.5 0.5 0.4 7 0.4 0.3 0.3 0.2 0.2 0.1 0.1 NAP NADCP NAP NADCP E) 1.0 ,r 0.9 , 0.8 0.7 0.6 0.5 ' 0.4 0.3 0 Southern Yakutsk region 0.2 I Magadan and Northern Yakutsk regions 0.1 DCP NAP NADCP Figure 63. Comparison of critical values calculated using the four techniques applied to the two study regions. A) Pg(h)/Sg(h) phase ratio. B) Pg(z)/Sg(z) phase ratio C) Pg(h)/Sg(z) phase ratio. D) Pg(z)/Sg(h) phase ratio E) Full vector phase ratio. 110 Full Vector Pam/89(2) FEW/580!) Pall/Seth) Pg(zVSg(z) The critical values found for the two regions usually did not separate an equal number of earthquakes and explosions (Fig. 36 and 61). This situation was more evident in the Magadan and Northern Yakutia regions than in the Southern Yakutia region. For the two regions, the standard deviation of explosions was always higher than earthquakes (Fig. 64). In another words, there is a larger variation in the amplitude of Pg with respect to Sg for the explosions than for the earthquakes. The larger standard deviation for explosions could be the result of different techniques ofblasting, geometries on the ripple fire detonations, and materials properties (gas porosity, density, velocity) in the near zone of the explosions. For all types of amplitude phase ratios calculated, earthquakes from the Southern Yakutia region always had a slightly lower average amplitude ratio than earthquakes from the Magadan and Northern Yakutia regions (Fig. 64). However, it is important to notice that this difference is less than the standard deviation of the amplitude ratios for both regions. In the case of explosions, there was not a clear pattern. The average of amplitude ratios for explosions was usually slightly higher in the Southern Yakutia region for the phase ratios and DCP ratios. On the other hand, NAP and NADCP ratios were usually slightly lower in the Southern Yakutia region. With the exception of the Pg(z)/Sg(z) and Pg(h)ng(z) phase ratios and the Pg(z)/Sg(z) DCP ratios, the standard deviations of the group of amplitude ratios from the Magadan and Northern Yakutia regions were always smaller than those of the Southern Yakutia region (Fig. 64). This was more significant in the case of explosions that had a much larger standard deviation for the Southern Yakutia region. 111 A) 2.0 ~ ~ ~ ,r—— B) 2.0 1 1 . 1.8 i l.8 ' ' 1.6 1.6 1 ,2 1-4 ‘ 1.4 1 a l.2 ‘ ° [.2 . " 0 . ‘2 1.0 . 5 1.0 .. , fl. 2 0.8 « ' 0.8 , . » q . ,1g 0.6 i 0‘6 fl ‘ O . 3 1 ‘ . *+Q ‘ ¢ 5 12 0'4 _, ’ +9 * ‘ 0-4 ‘ A“ . 0.2 éé if 4 0.2 0.0 ~ 0.0 4 . . . _02 a .02 1 ‘L 1‘ L . . -o.4 .04 ‘ PsH/SsH Pal/Sal PgH/ng 9325311 Full vector Perl/83H Pal/Sal Pull/$32 PgZISgH Full vector C) 2.0 r" ' " ‘ D) 2.0 1 1.8 ‘ 1.8 1 1.6 « 1.6 1 1.4 ' O 1.4 ~ 0 L2 ' , , '3 1.2 :5 1.0 i ' a 1.0 T *t 0.8 j i o “- 0.8 1 1 o %o g 0.6 ‘ +., +oi. é+ . é 0,51 To { +‘ 0.4 ' A . + z 0.4 « 1 ~ 02 :50 9* ‘ 00* 4. 02 éi H 1 49 ‘H 0.0 ‘ i. 0.0 ‘ -02 ‘ .o,2 . -0-4 ‘ ‘ *' -o.4 » i -—+- -L-— -- - Pall/83H Pal/Sal Pull/Sal 1232/ng Full vector PsH/SsH P3218112 PgH/ng PgZ/SgH Full vector A Earthque Southern Yakutia region 0 Earthqmlre Mapdan and Northern Yakutia regions I Explosion Southern Yakutia region 0 Explosion Magadan and Northern Yakutia regions Figure 64. Comparison of averages and standard deviations of all type ofamplitude phase ratios for the two study regions. 112 3. CONCLUSIONS There was a tendency of chemical explosions to have higher values than earthquakes for the five types of amplitude ratios explored in the Yakutia and Magadan regions. The average of all types of amplitude phase ratios for explosions was always higher than earthquakes. However, an overlap in the values ofthe groups of the two types of events was also noticed, especially in the cases where the phase ratios were not averaged over the network. The best earthquake-explosion discriminants found for the Southern Yakutia region and the Magadan and Northern Yakutia regions were: the Pg(h)ng(h), Pg(z)/Sg(h), and the full vector NAP ratios and the Pg(h)/Sg(h), Pg(z)/Sg(h), and the full vector NADCP phase ratios. The percentage of correctly classified ratios that these types of discriminants produced was 86.8-89.1% for the Southern Yakutia region and 86.1- 91.7% for the Magadan and Northern Yakutia regions Critical values were found for five types of amplitude ratios that were calculated in four different ways: the raw phase ratio and the DCP, NAP, and NADCP ratios (Table 10, 15). For earthquake-explosion discrimination purposes in the two regions studied, an amplitude phase ratio that is lower than the critical value is likely to be an earthquake while an amplitude phase ratio that is higher than the critical value is likely to be an explosion. Good separations were found analyzing stations separately. In the Southern Yakutia region, the best separations were found at stations TUG, USZ, and UURS, while 113 in the Magadan and Northern Yakutia regions the best separations were found at SUU and SEY. There were no important differences in the performance and averages of amplitude phase ratios calculated between the two studied regions. The only important differences in the critical values were found for the two discriminants which performed badly: the Pg(z)/Sg(z) and Pg(h)/Sg(z) phase ratios. The standard deviation ofthe group of explosions was always considerably larger than that of earthquakes for the two regions. The larger standard deviation for explosions could be the result of the variability in the techniques of blasting, geometries on the ripple fire detonations, and near-source materials properties (gas porosity, density, velocity) within the regions. A weak earthquake amplitude phase ratio vs. distance relationship was found for the Yakutia and Magadan regions. For this reason, the distance correction did not have a significant effect on the performance of the amplitude ratios. More importantly, averaging the amplitude phase ratios when more than three stations were available reduced the scatter that the Pg/Sg phase ratios initially had and significantly improved the discrimination power of the amplitude ratios. Despite the fact that this study was based on analog data collected only from short period instruments and analyzed without the use of corrections for seismic ray paths, it is significant that discrimination between the two types of events can be observed. This fact confirms that it is possible to conduct earthquake-explosion discrimination studies using historic Russian regional data. Nevertheless, in order to verify the results and increase the reability of the estimates, the use of the amplitude phase ratios with other alternative 114 discriminants is recommended. Some ofthese could be the location of the source (known mines or faults), the time of occurrence (daytime vs. nighttime), and the sign of the first arrival. Future work will attempt to use the totality of the amplitude information acquired to create more amplitude phase ratios of specific types. Future studies should also attempt to discriminate between earthquakes and explosions in the study area using waveforms recorded by recently installed digital seismic stations, which will allow better control of frequency bands for analysis and allow waveform correlation studies. 115 4. REFERENCES Agnew, D. C. (1990). The use of time-of-the-day seismicity maps for earthquake/explosion discrimination by local networks, with an application to the seismicity of San Diego county, Bulleting ofthe Seismological Society of America. 80, 747-750. Avetisov, G. P. (1999). Geodynarnics of the zone of continental continuation of the mid- Artic earthquakes belt (Laptev Sea), Physics ofthe Earth Planetary Interiors. 114, 59-70. Chapman, M., and S. C. Solomon (1976). North American-Eurasian plate boundary in Northeast Asia, Journal ofGeophysical Research. 81, 921-930. Cook, D., K. Fujita, and C. McMullen (1986). Present day plate interactions in Northeast Asia: North American, Eurasian, and Okhotsk plates, Journal ofGeodynamics. 6, 33-51. Davies, J. B., and S. Smith (1968). Source parameters of earthquakes and discrimination between earthquakes and nuclear explosions, Bulletin ofthe Seismological Society ofAmerica. 58, 1503-1517. Deneva, D., L. Khristoskov, N. Barachkova, N. Dotesev, and K. Marinova (1989). Detection of industrial explosions and weak earthquakes with local seismological networks, Izvestiya, Earth Physics. 25, 750-753. Derr, J. (1970). Discrimination of earthquakes and explosions by the Rayleigh-wave spectral ratio, Bulletin ofthe Seismological Society ofAmerica. 60. 1653-1668. Douglas, A., J. A. Hudson, P. D. Marshall, and J. B. Young (1974). Earthquake that look like explosions, The Geophysical Journal ofthe Royal Astronomical Society. 36, 227-233. Drachev, S. (2000). Laptev Sea rified continental margin: modern knowledge and unsolved questions, Polarforschung. 68, 41-50. Fah, D., and K. Koch (2002). Discrimination between earthquakes and chemical explosions by multivariate statistical analysis: a case study for Switzerland. Bulletin ofSeismological Society ofAmerica. 92, 1795-1805. Filina, A. G. (1999). Recognition of records from industrial explosions in the Altai-Sayan region. Izvestiya, Physics ofthe Solid Earth. 35, 461-468. 116 Franke, D., F. Kruger, and K. Klinge (2000). Tectonics ofthe Laptev Sea—Moma ‘Rifi’ region: investigation with seismologic broadband data, Journal ofSeismology. 4, 99-116. Fujita, K. (1995). Peaceful nuclear explosions in the Sakha Republic (Yakutia), Russia, Seismological Research Letters. 66, 20-24. Fujita, K., F. W. Cambray, and M. A. Velbel (1990a). Tectonics ofthe Laptev Sea and Moma Rift Systems, Northeastern USSR, Marine Geology. 93, 95-118. Fujita, K., D. B. Cook, H. Hasegawa, D. Forsyth, and R. Wetmiller (1990b). Seismicity and focal mechanisms of the Artie region and the North American plate boundary in Asia, in The Artic Ocean Region: The Geology ofNorth America, vol. L, A. Grantz, L. Johnson, and J. F. Sweeney (Editors), Geological Society of America, Boulder, Colorado, 79-100. Fujita, K., K. Mackey, R. McCaleb, L. Gunbina, V. Kovalev, V. Imaev, and V. N. Smimov (2002). Seismicity of Chukotka, northeastern Russia, in Tectonic evolution ofthe Bering Shelf-Chukchi Sea-Arctic margin and adjacent Iandmasses, Special Paper 360, E. L. Miller, A. Grantz, S. L. Klemperer (Editors), Geological Society of America, Boulder, Colorado, 259-272. Fujita, K., G. F. Sella, K. G. Mackey, S. Stein, K. D. Park, V. S. Imaev, and D. Hindle (2004). Relationships between seismicity and GPS determined velocities in Northeast Asia, Eos Trans. AGU, 85 (4 7), Fall Meet. Suppl, Abstract GP41A- 0836. Fujita, K., D. Stone, P. W. Layer, L. M. Parfenov, and B. Koz’min (1997). Cooperative program helps decipher tectonics of northeastern Russia, Transactions, American Geophysical Union (Eos), 78, 245, 252-253. Godzikovskaya, A. A. (1995). Local explosions and earthquakes, Russian Joint-Stock Association Energy and Electrification (EES Rossii), Moscow, 98 pp. (in Russian). Hartse, H., S. Taylor, S. Phillips, and G. Randall (1997). A preliminary study of regional discrimination in Central Asia with emphasis on western China, Bulletin ofthe Seismological Society ofAmerica. 87, 551-568. Hartse, H., K. Mackey, K. Fujita, and B. Koz’min (2005). Discrimination analysis of the NEVA —2, -3, and —4 PNE’s using digital and analog regional seismic records, SSA Abstract, 2005 Annual Meeting. Imaev, V. S., L. P. Imaeva, and B. M. Koz’min (1994). Active faults and recent geodynamics of Yakutian seismic belts, Geotectonics. 28, 146-158. Imaev, V. S., L. P. Imaeva, and B. M. Koz’min (1995). Seismotectonic dislocations in seismic belts of Yakutia, Geotectonics. 29, 73-86. 117 Imaev, V.S., L. P. Imaeva, B. M. Koz’min, L. V. Gunbina, K. G. Mackey, and K. Fujita (2000). Seismicity and present-day boundaries of plates and blocks in northeast Asia, Geotectonics. 24, 294-301. Kim, W. Y., D. W. Sirnpsom, and P. G. Richards (1993). Discrimination ofearthquakes and explosions in the eastern United States using regional high-frequency data, Geophysical Research Letters. 20, 1507-1510. Kim, W. Y., A. L. Aharonian, A. L. Lerner-Lam, and P. G. Richards (1997). Discrimination of earthquakes and explosions in southern Russia using regional- high frequency three-component data from the IRIS/JSP Caucasus network, Bulletin ofthe Seismological Society ofAmerica. 87, 569-588. Kim, S. G., Y. Park, and W. Y. Kim (1998). Discrimination of small earthquakes and artificial explosions in the Korea Peninsula using Pg/Lg ratios, Geophysical Journal International. 134, 267-276. Koz’min, B., L. Linkimer, K. Fujita, and K. Mackey (2004). Seismicity and Tectonics Stress Field of the Laptev Sea Shelf, Eos Trans. AGU, 85 (47), Fall Meet. Suppl., Abstract GP41A-0830. Li, Y., N. T. Toksoz, and W. Rosi (1995). Source time functions of nuclear explosions and earthquakes in central Asia determined using empirical Green’s functions, Journal ofGeophysical Research. 100, 659-674. Mackey, K. (1999). Seismological studies in Northeast Russia. PhD Thesis, Michigan State University, East Lansing, 326 pp. Mackey, K., and K. Fujita (1999). The northeast Russia seismicity and explosion contamination of the Russian earthquake catalog, in Proceedings ofthe 21 Seismic Research Symposium: Technologiesfor Monitoring The Comprehensive Nuclear-Test-Ban Treaty (CTBT), Vol. 1 US. Department of Defense, Dulles, VA, 1 5 1-161 . Mackey, K., and K. Fujita (2005). Explosion Contamination ofthe Baikal Seismicity Catalog. Part 4final report: regional-scale ground-truth studies ofNortheast Russia, Department of Geological Sciences, Michigan State University, East Lansing, 25 pp. Mackey, K., K. Fujita, L. Gunbina, V. Kovalev, V. Imaev, B. Koz’min, and L. Imaeva (1997). Seismicity of the Bering Strait: evidence for a Bering Block. Geology, 25 (11): 979-982. Mackey, K., and K. Fujita (2001). Seismicity characterization and structure velocity of Northeast Russia, NERSP Report 8, Department of Geological Sciences, Michigan State University, East Lansing, 119 pp. 118 Mackey, K. G., K. Fujita, L. K. Steck, and H. E. Hartse (2002). Seismic regionalization in northeast Russia, in Proceedings ofthe 24 Seismic Research Review—Nuclear Explosion Monitoring Innovation and Integration, vol. 1 U. S. Department of Energy, National Nuclear Security Administration and Defense Threat Reduction Agency, 107-116. Mackey, K., K. Fujita, L. Gunbina, B. Koz’min, V. Imaev, L. Imaeva, and B. Sedov (2003). Explosion Contamination of the Northeast Siberian seismicity catalog: implications for natural earthquake distribution and location of the Tanlu fault in Russia, Bulletin ofthe Seismological Society ofAmerica. 93, 737-746. Mackey, K., K. Fujita, H. Hartse, L. Steck, and T. Stead (2005). Seismic characterization ofNortheast Asia and analysis of the Neva PNE’s. SSR Abstract, 27‘h Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies. Malamud, A. A., and N. Nikolaevskii (2001). Recognition of industrial explosions and weak earthquakes from their seismic energy, Izyestiva, Physics ofthe Solid Earth. 37, 151-156. Odinets, M. G. (1996). The problem of polluting the earthquake catalog with industrial explosions blasts in northeastern Russia, in Geophysical Models ofGeologic Processes in Northeast Russia, T. I. Lin’kova and V. A. Bobrobnikov (Editors). NEISRI, Magadan, Russia, 90-99 (in Russian). Parfenov, L., M., B. Koz’min, V. Imaev, and L. A. Savostin (1987). The tectonic character ofthe Olekma-Stanovoy seismic zone, Geotectonics. 21, 560-572. Pomeroy, P. W., W. J. Best, and T. McEvilly (1982). Test ban treaty verification with regional data — a review, Bulletin ofSeismological Society ofAmerica. 72. S89- S129. Rautian T. G. (1960). Energy of earthquakes, in Y. V. Riznichenko (Editor). Methodsfor the detailed study ofseismicity, Izdatel’stvo Akademii Nauk SSSR, Moscow, 75- 114 (in Russian). Riegel, S., K. Fujita, B. Koz’min, V. Imaev, and D. Cook (1993). Extrusion tectonics of the Okhotsk plate, Northeast Asia, Geophysical Research Letters. 20, 607-610. Rodgers, A., T. Lay, W. Walter, and K. Mayeda (1997). A Comparison of regional-phase amplitude ratio measurement techniques, Bulletin ofSeismological Society of America. 87, 1613-1621. Seno, T., T. Sakurai, and S. Stein (1996). Can the Okhotsk plate be discriminated from the North American plate?, Journal ofGeophysical Research. 101, 11305-11315. Stevens, J, L., and S. M. Day (1985). The physical basis of the mb: Ms and Variable Frequency Magnitude methods for earthquakes/explosion discrimination, Journal ofGeophysical Research. 90, 3009-3020. 119 Taponnier, P., G. Peltzer, A. Y. Le Dain, and R. Armijo (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology. 10, 611-616. Taylor, S., M. Denny, E. S. Vergino, and R. Glaser (1989). Regional discrimination between NTS explosions and western US earthquakes, Bulletin ofSeismological Society ofAmerica. 79, 1 142-1176. Taylor, S. (1996). Analysis of high-frequency Pg/Lg ratios from NTS explosions and Western US Earthquakes, Bulletin ofSeismological Society ofAmerica. 86, 1042— 1053. Walter, W., K. Mayeda, and H. Patton (1995). Phase and spectral ratio discrimination between NTS earthquakes and explosions. Part I: empirical observations, Bulletin ofSeismological Society ofAmerica. 85, 1050-1067. Wiemar, S., and M. Baer (2000). Mapping and removing quarry blast events from seismicity catalogs, Bulletin ofSeismological Society ofAmerica. 90, 525-530. Worrall, D. M., V. Kruglyak, K. Funst, and V. Kuznetsov (1996). Tertiary tectonics of the Sea of Okhotsk, Russia: far-field effects of the India-Eurasia collision, Tectonics. 15, 813-826. 120 APPENDICES 121 APPENDIX A Amplitude Information 122 123 Earthquakes in the Southern Yakutia Region Date Origin Time Lat. Long. Station Dist. (km) K Pg NS Pg EW PgZ SgNS Sg EW 1985 218 14 22 33.0 55.35 123.34 UURS 9.49 6.6 0.156 0.044 0.113 0.613 1.322 1985 218 14 22 33.0 55.35 123.34 USZ 173.22 8.9 0.020 0.022 0.005 0.100 0.198 19851116 1722180 56.33 123.08 CLNS 125.10 9.6 0.060 0.070 0.100 0.350 0.380 19851116 1722180 56.33 123.08 TUG 142.94 10.4 0.130 0.180 0.100 0.900 1.480 198612 20 08 52.4 56.18 123.60 CLNS 108.45 7.9 0.007 0.013 0.099 0.081 198612 20 08 52.4 56.18 123.60 UURS 100.82 7.9 0.005 0.008 0.015 0.037 0.068 198612 20 08 52.4 56.18 123.60 USZ 130.80 8.7 0.014 0.006 0.006 0.189 0.076 198612 20 08 52.4 56.18 123.60 TUG 177.32 8.9 0.005 0.005 0.006 0.150 0.155 198612 20 08 52.4 56.18 123.60 CGD 507.53 8.9 0.014 0.007 0.008 0.036 0.015 198617 1818 5.0 57.54 128.50 CGD 183.19 8.0 0.007 0.003 0.008 0.058 0.023 1986118 21 1958.0 55.70 124.40 UURS 86.84 8.1 0.005 0.004 0.043 0.068 1986118 21 1958.0 55.70 124.40 CLNS 130.54 7.5 0.013 0.013 0.040 0.040 198627 1816287 56.62 121.10 USZ 30.83 7.7 0.012 0.122 0.104 198629 12 37 16.7 56.69 122.14 USZ 36.50 7.2 0.014 0.162 0.193 198629 12 37 16.7 56.69 122.14 TUG 75.92 8.2 0.123 0.108 0.111 1986211 17 51 20.5 57.03 127.33 CLNS 148.99 9.9 0.126 0.395 0.620 1986 211 17 51 20.5 57.03 127.33 CGD 272.69 10.1 0.015 0.504 0.204 1986 211 1751205 57.03 127.33 USZ 353.36 10.0 0.067 0.243 0.126 1986 211 1751205 57.03 127.33 TUG 353.93 9.7 0.011 0.171 0.133 1986214 20 46 58.1 57.53 125.42 CLNS 82.91 8.9 0.025 0.316 0.270 1986 214 20 46 58.1 57.53 125.42 TUG 237.89 8.3 0.011 0.064 0.033 1986 214 20 46 58.1 57.53 125.42 USZ 255.48 8.3 0.006 0.054 0.025 1986 220 1751 8.4 56.88 120.83 TUG 58.52 8.1 0.027 0.192 0.231 1986 220 17 51 8.4 56.88 1 20.83 USZ 58.47 8.0 0.022 0.243 0.303 1986 224 174718.9 56.63 123.07 TUG l 19.90 7.5 0.030 0.042 0.040 124 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ SgNS Sg EW 1986 227 l31845.7 57.57 125.38 CLNS 86.20 8.3 0.080 0.080 0.100 0.150 0.170 1986 227 1318457 57.57 125.38 TUG 235.97 8.1 0.010 0.010 0.013 0.030 0.035 1986 227 16 38 46.9 57.57 125.48 CLNS 88.41 10.0 0.050 0.670 0.120 1986 227 16 38 46.9 57.57 125.48 TUG 241 .90 9.8 0.040 0.060 0.070 0.350 0.300 1986 227 16 38 46.9 57.57 125.48 USZ 260.54 9.2 0.030 0.040 0.170 0.100 1986 227 16 38 46.9 57.57 125.48 CGD 328.70 9.9 0.030 0.040 0.036 0.280 0.160 1986 227 16 38 46.9 57.57 125.48 KROS 361.78 9.4 0.020 0.010 0.020 0.050 0.110 1986 227 20 1346.1 57.56 125.46 CLNS 86.93 10.1 0.050 0.040 1 .600 0.780 1986 227 20 1346.1 57.56 125.46 TUG 240.59 10.1 0.050 0.100 0.080 0.500 0.360 1986 227 20 1346.1 57.56 125.46 UURS 286.77 9.1 0.040 0.037 0.110 0.240 1986 227 20 13 46.1 57.56 125.46 CGD 330.26 10.2 0.070 0.070 0.045 0.460 0.220 19863 3 13 09 33.0 56.31 122.85 USZ 82.28 8.4 0.013 0.006 0.005 0.189 0.114 198633 13 09 33.0 56.31 122.85 UURS 1 14.67 8.3 0.010 0.017 0.015 0.106 0.068 19863 3 13 09 33.0 56.31 122.85 TUG 135.55 9.2 0.021 0.022 0.022 0.300 0.222 198633 13 09 33.0 56.31 122.85 CLNS 138.77 7.8 0.019 0.006 0.006 0.059 0.026 1986412 12 41 33.3 56.44 123.29 USZ 105.13 8.5 0.034 0.203 0.145 1986 412 12 41 33.3 56.44 123.29 CLNS 108.09 8.7 0.030 0.278 0.175 1986 412 12 41 33.3 56.44 123.29 TUG 143.69 8.5 0.034 0.107 0.133 1986 427 15 45 26.9 56.86 122.61 USZ 70.50 6.5 0.016 0.019 0.018 19865 8 1821 3.4 55.30 123.55 USZ 185.94 9.0 0.016 0.189 0.202 198658 18 21 3.4 55.30 123.55 CLNS 190.72 9.4 0.038 0.357 0.189 19865 8 18 21 3.4 55.30 123.55 KROS 240.22 8.9 0.015 0.121 0.007 0.074 198661 1213 58.6 56.60 121.18 USZ 25.56 6.4 0.013 0.057 0.045 0.045 198661 1213 58.6 56.60 121.18 TUG 76.71 7.4 0.005 0.040 0.070 0.050 198663 12 49 40.8 55.89 124.30 USZ 183.37 8.3 0.010 0.110 0.080 0.050 198663 12 49 40.8 55.89 124.30 TUG 231.11 9.0 0.013 0.140 0.120 0.140 125 Date Origin Time Lat. Long. Station Dist. (km) PgNS Pg EW PgZ SgNS Sg EW 198665 17 48 8.2 57.59 125.39 CLNS 88.52 7.2 0.005 0.150 0.060 1986610 1410 7.0 57.38 122.80 TUG 80.22 9.4 0.120 0.190 0.130 0.560 0.490 1986 610 1410 7.0 57.38 122.80 USZ 116.91 8.4 0.030 0.030 0.030 0.100 0.080 1986 610 1410 7.0 57.38 122.80 CLNS 140.37 8.7 0.030 0.020 0.070 0.170 0.060 1986619 15 51 32.9 56.67 121.32 USZ 20.60 5.2 0.004 0.040 0.030 198676 13 53 58.2 57.62 120.93 USZ 124.40 10.1 0.133 0.067 0.183 0.512 0.923 198676 13 53 58.2 57.62 120.93 CLNS 254.28 9.9 0.020 0.024 0.054 0.408 0.194 198676 13 53 58.2 57.62 120.93 UURS 293.85 9.7 0.049 0.076 0.036 0.186 0.269 1986713 15 34 53.5 56.54 121.00 USZ 36.35 6.5 0.002 0.023 0.019 0.040 0.068 1986 713 15 34 53.5 56.54 121.00 TUG 86.28 7.0 0.005 0.005 0.006 0.021 0.022 1986 726 2121 1.8 56.56 120.93 TUG 85.77 7.0 0.012 0.009 0.009 0.021 0.022 198684 18 3636.1 57.09 122.36 TUG 56.72 8.4 0.021 0.044 0.023 0.256 0.350 198687 18 51 24.0 55.10 123.30 USZ 194.44 10.0 0.245 0.169 0.193 1.373 1.689 198687 18 51 24.0 55.10 123.30 TUG 266.39 11.0 0.213 0.110 0.187 1.386 0.878 198687 18 51 24.0 55.10 123.30 CGD 601.24 12.2 0.231 0.287 0.072 0.972 1.410 1986 812 16 06 23.2 56.58 121.17 USZ 25.94 8.0 0.061 0.101 0.158 0.665 0.765 1986812 16 06 23.2 56.58 121.17 TUG 79.05 9.1 0.085 0.076 0.082 0.267 0.504 1986 812 16 06 23.2 56.58 121.17 CLNS 229.57 9.1 0.010 0.016 0.054 0.132 0.081 1986813 19 36 36.2 57.32 122.10 TUG 37.72 8.3 0.010 0.021 0.041 0.683 0.416 1986 813 19 36 36.2 57.32 122.10 USZ 89.88 7.7 0.005 0.005 0.024 0.040 0.039 1986 822 15 34 5.8 56.87 120.09 TUG 95.12 7.6 0.011 0.011 0.012 0.040 0.043 1986 822 15 34 5.8 56.87 120.09 USZ 97.91 7.3 0.004 0.004 0.010 0.029 0.021 1986 827 15 47 7.2 57.70 127.40 CLNS 178.21 7.5 0.012 0.035 0.031 1986915 17 37 34.2 57.00 123.80 CLNS 69.11 6.8 0.009 0.033 0.016 1987 620 14 54 30.6 57.49 128.28 CGD 196.19 8.7 0.021 0.016 0.017 0.156 0.060 1987102 12 51 47.8 56.22 124.82 CLNS 69.16 7.6 0.011 0.009 0.020 0.039 0.037 126 Date Origin Time Lat. Long. Station Dist. (km) PgNS Pg EW PgZ Sg NS Sg EW SgZ 1987105 15 57 58.2 56.82 123.09 USZ 95.95 7.9 0.017 0.009 0.009 0.074 0.041 0.039 1987105 15 57 58.2 56.82 123.09 TUG 109.55 7.5 0.014 0.015 0.009 0.036 0.025 0.022 1987105 15 57 58.2 56.82 123.09 UURS 169.28 8.2 0.006 0.017 0.010 0.022 0.075 0.020 1987105 16 00 41.9 56.85 123.00 TUG 103.13 7.6 0.009 0.009 0.009 0.029 0.040 0.081 1987105 16 00 41.9 56.85 123.00 UURS 172.96 8.1 0.01 1 0.010 0.005 0.040 0.072 0.022 19871012 14 04 27.0 56.55 121.02 USZ 35.05 6.8 0.025 0.009 0.021 0.094 0.080 0.079 19871020 12 08 30.8 54.01 128.00 UURS 339.56 9.4 0.010 0.047 0.017 0.122 0.090 0.105 19871020 12 08 30.8 54.01 128.00 TUG 546.51 9.6 0.008 0.005 0.004 0.059 0.072 0.056 19871022 15 07 2.4 56.83 120.97 USZ 48.33 8.6 0.033 0.034 0.034 0.724 0.240 0.270 19871022 214711.1 56.87 121.04 USZ 48.13 7.8 0.110 0.034 0.023 0.230 0.183 0.169 19871025 19 09 9.0 56.59 120.92 USZ 41.25 6.0 0.005 0.004 0.005 0.020 0.032 0.021 19871026 18 05 23.3 56.60 121.07 TUG 78.56 6.5 0.004 0.010 0.025 0.016 19871029 1918 1.0 57.72 124.57 TUG 191.37 8.5 0.010 0.030 0.007 0.101 0.068 0.022 19871 029 1918 1.0 57.72 124.57 USZ 221.19 7.0 0.003 0.004 0.003 0.009 0.010 0.010 19871029 1956 1.5 57.81 121.68 TUG 61.25 7.3 0.009 0.005 0.016 0.094 0.020 0.081 19871030 15 44 7.2 57.29 125.26 KROS 336.02 9.3 0.005 0.030 0.040 0.022 1987112 16 04 27.0 57.40 124.90 CLNS 62.33 6.5 0.006 0.026 0.038 0.027 1987114 14 42 5.5 56.57 121.03 USZ 34.43 7.4 0.020 0.021 0.024 0.200 0.220 0.200 1987114 14 42 5.5 56.57 121.03 TUG 82.54 8.4 0.045 0.039 0.027 0.130 0.130 0.074 19871110 1644 51.4 56.69 124.56 USZ 182.21 7.5 0.006 0.018 0.026 0.029 0.022 19871113 12 21 44.2 57.23 120.80 USZ 88.61 7.2 0.007 0.015 0.020 0.049 0.021 0.099 19871114 14 50 29.7 56.59 121.13 USZ 28.42 7.0 0.016 0.006 0.011 0.180 0.188 0.212 19871114 14 50 29.7 56.59 121.13 TUG 78.56 8.4 0.025 0.028 0.034 0.050 0.228 0.057 19871114 14 50 29.7 56.59 121.13 UURS 193.62 8.6 0.009 0.018 0.013 0.133 0.074 0.026 19871114 14 50 29.7 56.59 121.13 CLNS 231.82 8.1 0.004 0.008 0.009 0.050 0.038 0.037 19871114 14 50 29.7 56.59 121.13 KROS 440.01 8.0 0.003 0.029 0.017 0.011 127 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ SgNS Sg EW SgZ 19871114 2018 3.0 56.58 121.08 USZ 31.44 7.0 0.042 0.034 0.133 0.193 0.146 19871114 2018 3.0 56.58 121.08 TUG 80.53 7.9 0.014 0.012 0.054 0.111 0.049 19871114 2018 3.0 56.58 121.08 CLNS 235.02 7.5 0.005 0.026 0.023 0.019 19871116 14 14 48.3 57.59 125.43 CLNS 89.35 8.1 0.009 0.018 0.088 0.106 0.095 19871116 14 14 48.3 57.59 125.43 TUG 239.19 7.7 0.006 0.003 0.023 0.028 0.011 19871116 14 14 48.3 57.59 125.43 USZ 258.73 7.3 0.003 0.003 0.010 0.010 0.010 198812 18 54 34.3 57.16 122.25 TUG 47.95 6.6 0.005 0.080 0.004 0.023 198819 12 35 13.1 56.58 121.03 USZ 34.49 6.9 0.017 0.010 0.120 0.125 0.110 198819 12 35 13.1 56.58 121.03 TUG 81.49 8.1 0.022 0.023 0.088 0.112 0.118 198819 17 53 30.6 56.65 120.60 USZ 61.51 6.3 0.010 0.008 0.016 0.010 0.015 1988111 20 50 42.9 56.68 120.70 USZ 56.17 5.4 0.003 0.010 0.009 0.006 1988112 20 09 42.5 57.08 123.40 TUG 1 17.69 7.9 0.020 0.012 0.050 0.067 0.023 1988 130 15 57 24.2 56.60 121.02 USZ 35.27 6.7 0.034 0.024 0.100 0.034 0.090 1988 130 15 57 24.2 56.60 121.02 TUG 79.58 7.3 0.020 0.016 0.038 0.056 0.035 198824 22 00 58.5 57.00 124.63 CLNS 24.16 6.8 0.004 0.002 0.035 0.031 0.019 198829 17 31 28.1 56.60 121.06 USZ 32.84 8.6 0.100 0.125 1 .000 0.300 0.840 198829 17 31 28.1 56.60 121.06 UURS 197.38 9.9 0.030 0.042 0.550 0.360 0.300 198829 17 31 28.1 56.60 121.06 CLNS 235.89 9.4 0.013 0.047 0.120 0.220 0.240 198829 17 31 28.1 56.60 121.06 KROS 444.27 9.2 0.008 0.020 0.083 0.013 1988210 1812410 54.73 121.96 USZ 205.02 7.6 0.006 0.007 0.028 0.013 0.018 1988 224 18 40 34.6 57.13 123.44 CLNS 94.21 8.0 0.008 0.063 0.057 0.150 1988 224 18 40 34.6 57.13 123.44 TUG 119.14 8.3 0.023 0.025 0.180 0.110 0.091 1988 224 18 40 34.6 57.13 123.44 USZ 129.03 7.8 0.026 0.020 0.062 0.040 0.032 198839 13 23 47.8 56.94 127.95 KROS 285.91 7.8 0.005 0.012 0.012 0.043 0.017 198839 13 23 47.8 56.94 127.95 CGD 255.84 8.5 0.014 0.014 0.061 0.032 0.025 198839 20 14 38.8 57.23 127.90 CGD 232.91 7.2 0.005 0.004 0.011 0.010 0.005 128 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ SgNS Sg EW SgZ 1988318 2013 54.1 56.98 122.66 USZ 80.07 6.4 0.007 0.003 0.011 0.006 0.008 1988416 12 53 2.3 57.88 121.89 TUG 72.12 7.2 0.021 0.017 0.020 0.027 0.039 0.017 1988 416 12 53 2.3 57.88 121.89 USZ 147.82 7.5 0.005 0.006 0.008 0.030 0.016 0.016 1988 421 18 04 2.0 55.50 122.30 USZ 125.99 7.3 0.003 0.010 0.006 0.028 0.019 0.017 1988 423 20 29 44.2 57.56 128.37 CGD 186.85 7.5 0.004 0.005 0.004 0.025 0.021 0.005 1988 424 1259 1.1 56.47 123.54 TUG 153.64 7.9 0.003 0.007 0.005 0.057 0.038 0.015 1988 424 16 23 26.9 57.00 124.83 USZ 203.30 9.7 0.102 0.038 0.078 0.356 0.236 0.259 1988 424 16 23 26.9 57.00 124.83 CLNS 18.25 8.0 0.267 0.243 0.797 1.233 1.280 1.261 1988 424 16 23 26.9 57.00 124.83 TUG 204.44 10.0 0.048 0.028 0.062 0.482 0.737 1988 424 16 23 26.9 57.00 124.83 UURS 213.91 8.9 0.020 0.004 0.006 0.138 0.129 0.108 1988 424 16 23 26.9 57.00 124.83 CGD 393.63 9.4 0.013 0.023 0.014 0.089 0.070 0.047 1988 424 16 23 26.9 57.00 124.83 KROS 316.29 8.7 0.026 0.010 0.028 0.038 0.056 0.037 1988 427 14 14 48.5 57.48 120.20 TUG 80.23 7.3 0.011 0.007 0.008 0.033 0.047 0.018 1988 427 14 14 48.5 57.48 120.20 USZ 132.47 7.6 0.004 0.006 0.009 0.046 0.028 0.019 1988 429 1212163 57.30 125.12 TUG 218.86 7.7 0.012 0.017 0.010 0.019 0.018 0.010 198851 15 27 4.4 57.42 123.18 TUG 103.41 7.9 0.011 0.022 0.017 0.049 0.036 0.017 19885 8 14 28 33.4 56.82 120.84 USZ 54.19 5.8 0.003 0.004 0.010 0.018 0.012 1990110 16 29 4.0 57.02 122.22 KROS 414.79 10.8 0.140 0.110 0.150 0.410 0.740 1990110 16 29 4.0 57.02 122.22 CGD 532.14 10.7 0.055 0.089 0.050 0.588 0.334 0.274 1999 129 16 45 16.6 57.32 120.75 USZ 98.67 10.6 0.374 0.305 0.417 1 .084 0.749 1.135 1999 129 16 45 16.6 57.32 120.75 CLNS 256.49 11.2 0.286 0.715 0.474 1.672 1.581 1.762 1999 129 16 45 16.6 57.32 120.75 UURS 271.39 10.8 0.132 0.128 0.186 1.196 1.116 1 .442 1999129 16 45 16.6 57.32 120.75 KROS 504.47 11.9 0.058 0.058 0.083 0.520 0.520 1990 224 16 29 24.4 57.08 125.75 KROS 304.92 10.0 0.075 0.018 0.086 0.470 0.470 0.410 1990 224 16 29 24.4 57.08 125.75 CGD 342.25 10.4 0.113 0.231 0.147 0.786 0.676 0.245 1990 224 16 29 24.4 57.08 125.75 YAK 591.75 10.9 0.030 0.050 0.240 0.270 0.390 129 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ Sg NS Sg EW SgZ 1990 227 13 04 13.5 57.06 122.25 CGD 528.64 9.7 0.015 0.027 0.017 0.119 0.020 0.074 1990 227 13 04 13.5 57.06 122.25 CLNS 162.62 10.0 0.027 0.070 1.034 1.750 0.590 1990 227 13 04 13.5 57.06 122.25 KROS 416.44 9.7 0.029 0.008 0.004 0.190 0.032 0.190 199039 12 38 4.2 56.39 127.09 CLNS 143.09 8.8 0.019 0.040 0.218 0.258 0.198 199039 12 38 4.2 56.39 127.09 CGD 336.36 8.3 0.011 0.008 0.008 0.050 0.035 0.026 1990319 1434184 53.14 131.66 KROS 339.07 8.6 0.008 0.018 0.019 0.084 0.038 0.055 1990 322 13 53 6.0 59.70 132.50 CGD 150.54 7.3 0.004 0.005 0.004 0.039 0.038 0.023 1990414 12 16 29.6 57.60 133.72 CGD 222.48 8.5 0.021 0.011 0.014 0.111 0.090 0.066 199051 13 27 29.4 56.86 132.09 CGD 227.67 10.3 0.683 0.470 0.348 0.795 1.132 0.370 199051 13 27 29.4 56.86 132.09 KROS 419.29 10.3 0.087 0.130 0.150 0.420 0.200 0.190 199051 13 27 29.4 56.86 132.09 UURS 577.07 10.1 0.020 0.026 0.034 0.193 0.121 0.157 199051 13 27 29.4 56.86 132.09 YAK 589.39 11.4 0.137 0.085 0.286 0.464 0.833 0.528 199051 13 27 29.4 56.86 132.09 KHG 672.56 11.2 0.024 0.063 0.026 1.235 0.384 0.420 199051 13 27 29.4 56.86 132.09 USZ 641.27 10.8 0.012 0.034 0.023 0.465 0.211 0.215 199051 13 27 29.4 56.86 132.09 NZD 738.33 10.7 0.015 0.012 0.008 0.115 0.127 0.162 199051 14 40 30.0 56.90 132.00 CGD 221.51 8.2 0.036 0.016 0.027 0.040 0.080 0.014 199055 2016106 57.14 122.29 USZ 77.14 6.9 0.006 0.007 0.006 0.044 0.027 0.023 1990513 1403 1.2 57.05 122.25 USZ 67.56 6.4 0.005 0.004 0.006 0.027 0.018 0.015 1990 513 20 15 21.3 56.44 122.96 USZ 85.08 6.8 0.003 0.002 0.003 0.032 0.023 0.022 1990 513 22 50 8.2 56.61 122.61 USZ 62.62 8.2 0.021 0.032 0.022 0.219 0.221 0.308 1990 513 22 50 8.2 56.61 122.61 UURS 150.55 8.3 0.010 0.014 0.005 0.089 0.171 0.110 1990517 18 37 36.4 56.52 121.19 UURS 185.43 10.5 0.165 0.116 0.311 0.952 0.925 1.053 1990 517 18 37 36.4 56.52 121.19 CLNS 229.47 10.8 0.088 0.159 0.269 0.992 1.106 0.569 1990 517 18 37 36.4 56.52 121.19 CGD 613.07 10.7 0.014 0.031 0.016 0.255 0.143 0.085 1990 517 18 37 36.4 56.52 121.19 YAK 777.55 12.0 0.014 0.020 0.020 0.646 0.429 0.330 1990 520 18 0142.8 57.42 128.17 CGD 206.37 7.0 0.004 0.003 0.004 0.019 0.014 0.006 130 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ Sg NS Sg EW SgZ 1990 521 13 55 8.4 56.93 123.52 USZ 124.58 8.3 0.019 0.032 0.032 0.173 0.097 0.079 1990521 13 55 8.4 56.93 123.52 CLNS 84.48 8.5 0.011 0.040 0.030 0.267 0.102 0.054 1990521 13 55 8.4 56.93 123.52 UURS 182.31 8.8 0.019 0.009 0.027 0.113 0.203 0.191 1990521 13 55 8.4 56.93 123.52 KROS 352.97 8.3 0.021 0.013 0.023 0.024 0.009 0.021 1990 525 14 50 24.3 57.04 122.17 USZ 63.87 7.2 0.008 0.016 0.017 0.096 0.055 0.044 1990 525 14 50 24.3 57.04 122.17 UURS 204.14 7.3 0.014 0.005 0.009 1990 526 1901 9.0 57.55 126.00 CLNS 103.12 7.5 0.011 0.015 0.018 0.045 0.027 0.029 1990 526 19 01 9.0 57.55 126.00 USZ 288.44 7.7 0.003 0.003 0.003 0.024 0.021 0.024 1990 529 14 52 33.2 56.50 123.92 USZ 143.01 7.5 0.008 0.007 0.005 0.046 0.046 0.035 1990 529 14 52 33.2 56.50 123.92 UURS 140.52 7.5 0.005 0.005 0.006 0.031 0.044 0.042 1990 531 14 43 46.4 56.05 123.86 UURS 92.69 7.3 0.003 0.003 0.005 0.023 0.041 0.027 1990531 14 43 46.4 56.05 123.86 USZ 151.09 7.7 0.005 0.004 0.003 0.065 0.053 0.033 199062 1711197 55.65 130.66 CGD 344.89 11.4 0.310 0.137 0.066 1.454 1.098 0.887 199062 171119.7 55.65 130.66 CLNS 379.73 11.3 0.286 0.186 0.390 1.284 1.247 1.346 199062 171119.7 55.65 130.66 USZ 571.22 11.3 0.077 0.154 0.188 1 .040 0.606 0.885 199062 1711197 55.65 130.66 KHG 826.77 12.2 0.025 0.017 0.055 0.993 0.718 0.630 199062 1711197 55.65 130.66 YAK 710.34 12.6 0.087 0.024 0.137 2.650 2.100 2.065 199062 171119.7 55.65 130.66 NZD 898.87 12.0 0.025 0.017 0.023 0.424 0.221 0.324 199063 12 16 44.3 57.46 121.53 USZ 100.07 7.5 0.003 0.003 0.004 0.051 0.044 0.044 199063 12 16 44.3 57.46 121.53 UURS 261.78 7.0 0.004 0.004 0.004 0.006 0.006 0.017 199065 1300 1.3 57.11 122.00 USZ 65.91 8.6 0.044 0.057 0.072 0.266 0.300 0.319 199067 14 0431.3 57.07 122.21 USZ 68.00 7.4 0.008 0.007 0.012 0.095 0.095 0.066 1990612 1803 14.0 57.50 128.30 CLNS 217.79 8.7 0.012 0.018 0.023 0.125 0.149 0.091 1990 612 18 03 14.0 57.50 128.30 KROS 351.40 8.7 0.013 0.003 0.013 0.064 0.055 0.036 1990612 18 03 14.0 57.50 128.30 UURS 397.12 8.7 0.015 0.012 0.010 0.036 0.038 0.058 1990614 18 46 35.0 57.10 122.40 USZ 77.57 6.2 0.003 0.003 0.003 0.011 0.012 0.011 131 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW 1990614 19 33 48.1 57.32 124.08 USZ 172.99 7.2 0.005 0.021 0.023 1990616 1539112 57.08 122.17 USZ 67.60 6.7 0.007 0.034 0.032 1990 616 15 3911.2 57.08 122.17 UURS 208.35 6.8 0.005 0.014 0.007 1990618 1752 3.3 57.04 122.18 TUG 49.37 7.5 0.054 0.208 0.163 1990 618 17 52 3.3 57.04 122.18 USZ 64.21 7.0 0.014 0.059 0.069 1990 618 17 52 3.3 57.04 122.18 UURS 203.94 7.5 0.010 0.027 0.021 1990 620 13 49 32.4 54.12 121.12 UURS 188.12 7.9 0.029 0.041 0.068 1990 620 13 49 32.4 54.12 121.12 USZ 273.20 8.2 0.020 0.038 0.057 1990 620 171412.0 56.55 121.14 USZ 27.69 5.6 0.004 0.030 0.020 1990 621 1733 21.1 57.06 122.18 TUG 48.25 8.6 0.180 0.830 0.630 1990 621 17 33 21.1 57.06 122.18 USZ 66.06 8.5 0.140 0.323 0.332 1990 621 1733 21.1 57.06 122.18 CLNS 166.82 9.0 0.048 0.353 0.442 1990 621 17 33 21.1 57.06 122.18 UURS 206.04 8.3 0.015 0.070 0.068 1990 625 13 22 54.7 55.81 121.73 USZ 84.00 8.0 0.052 0.073 0.177 1990 625 13 22 54.7 55.81 121.73 UURS 109.41 8.2 0.030 0.170 0.020 1990 629 12 30 10.1 56.72 124.04 CLNS 54.08 7.2 0.020 0.106 0.101 1990 629 12 30 10.1 56.72 124.04 USZ 150.82 8.2 0.018 0.085 0.087 1990 629 12 30 10.1 56.72 124.04 UURS 166.07 7.3 0.008 0.046 0.090 1990 630 1835 3.5 57.10 122.19 USZ 70.16 8.2 0.078 0.227 0.177 1990 630 18 35 3.5 57.10 122.19 CLNS 166.85 8.5 0.012 0.113 0.157 1990 630 18 35 3.5 57.10 122.19 UURS 210.08 7.9 0.006 0.041 0.041 199083 14 02 8.4 57.54 127.81 CLNS 191.91 9.9 0.020 0.300 0.655 199083 14 02 8.4 57.54 127.81 CGD 212.75 9.8 0.104 0.310 0.284 199083 14 02 8.4 57.54 127.81 UURS 376.66 8.6 0.015 0.040 0.027 199083 14 02 8.4 57.54 127.81 USZ 391.55 8.9 0.007 0.059 0.030 1991115 16 15 47.7 57.09 122.26 USZ 71.54 8.6 0.037 0.248 0.386 132 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ SgNS Sg EW SgZ 1991115 16 15 47.7 57.09 122.26 TNL 551.34 8.5 0.117 0.071 0.096 0.666 0.686 0.369 1991115 16 15 47.7 57.09 122.26 UURS 207.75 8.3 0.008 0.008 0.014 0.041 0.056 0.128 1991 123 2124 5.3 57.06 122.24 UURS 204.92 9.9 0.034 0.065 0.066 0.470 0.500 0.736 1991 123 2124 5.3 57.06 122.24 CGD 529.20 10.5 0.080 0.056 0.047 0.315 0.278 0.277 1991311 1947 51.3 56.13 127.03 CLNS 152.83 8.6 0.033 0.034 0.085 0.153 0.184 0.109 1991311 19 47 51.3 56.13 127.03 UURS 256.15 8.5 0.010 0.010 0.014 0.108 0.077 0.080 1991311 1947 51.3 56.13 127.03 CGD 361.93 8.4 0.006 0.006 0.010 0.056 0.043 0.014 1991311 1947 51.3 56.13 127.03 USZ 338.61 8.0 0.006 0.007 0.007 0.030 0.016 0.023 1991311 1947 51.3 56.13 127.03 KROS 189.33 8.2 0.004 0.005 0.100 0.054 0.067 1991516 14 12 46.7 56.50 124.88 CLNS 37.82 9.0 0.233 0.295 0.447 1.547 1.415 0.969 1991516 14 12 46.7 56.50 124.88 USZ 201.85 8.8 0.012 0.019 0.020 0.149 0.100 0.187 1991516 14 12 46.7 56.50 124.88 TUG 223.67 9.5 0.017 0.017 0.210 0.333 0.259 1991516 14 12 46.7 56.50 124.88 KROS 265.89 8.2 0.024 0.011 0.030 0.052 0.023 0.019 1991716 15 10 26.1 56.59 120.98 USZ 37.58 8.2 0.053 0.085 0.115 0.645 0.616 0.702 1991716 1510261 56.59 120.98 TUG 81 .49 8.7 0.083 0.072 0.099 0.229 0.290 0.156 1991716 15 10 26.1 56.59 120.98 UURS 200.01 8.7 0.010 0.015 0.019 0.148 0.097 0.197 1991716 15 10 26.1 56.59 120.98 KROS 447.94 8.3 0.020 0.003 0.015 0.029 0.021 1991716 18 40 57.6 57.80 132.87 CGD 168.94 10.0 0.144 0.156 0.300 0.789 0.973 0.875 1991716 18 40 57.6 57.80 132.87 KROS 523.11 9.5 0.008 0.009 0.011 0.034 0.066 0.053 1991 722 12 05 27.3 55.79 131.11 KROS 303.09 9.8 0.061 0.081 0.100 0.466 0.180 0.210 1991 722 12 05 27.3 55.79 131.11 CGD 330.63 10.0 0.140 0.073 0.068 0.144 0.666 0.106 1991 722 12 05 27.3 55.79 131.11 UURS 499.52 10.0 0.017 0.050 0.071 0.230 0.176 0.152 1991 722 12 05 27.3 55.79 131.11 USZ 595.16 9.7 0.025 0.018 0.011 0.105 0.071 0.096 1991 724 18 47 4.7 57.13 122.21 USZ 73.61 8.0 0.026 0.027 0.029 0.242 0.116 0.120 1991 730 12 36 20.8 55.36 124.41 KROS 194.53 8.4 0.011 0.017 0.020 0.160 0.076 0.050 1991 730 12 36 20.8 55.36 124.41 USZ 220.56 8.2 0.007 0.006 0.007 0.066 0.045 0.010 133 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ SgNS Sg EW SgZ 1991 730 12 36 20.8 55.36 124.41 UURS 75.81 8.4 0.015 0.041 0.031 0.397 0.285 0.228 1991819 191913.5 55.77 130.16 KROS 251.29 8.2 0.008 0.013 0.015 0.031 0.061 0.054 199192 12 05 14.4 57.12 122.26 USZ 74.31 8.7 0.039 0.068 0.058 0.615 0.350 0.261 199195 17 50 40.0 56.60 122.10 USZ 31.42 6.3 0.026 0.027 0.029 0.071 0.085 0.033 199196 1828 2.3 57.16 122.05 USZ 72.24 7.8 0.055 0.024 0.015 0.153 0.133 0.080 199196 18 28 2.3 57.16 122.05 UURS 219.14 7.8 0.011 0.007 0.009 0.015 0.017 0.019 1991918 18 13 44.0 57.00 122.07 USZ 56.88 7.0 0.030 0.042 0.043 0.094 0.119 0.051 1991918 18 13 44.0 57.00 122.07 TUG 46.60 7.6 0.093 0.057 0.043 0.370 0.108 0.136 19911022 1219 2.0 57.09 122.07 TUG 40.84 8.7 0.110 0.150 0.040 0.820 0.910 0.620 19911022 1219 2.0 57.09 122.07 USZ 65.66 9.0 0.194 0.212 0.222 0.584 0.529 0.773 19911022 1219 2.0 57.09 122.07 UURS 211.40 8.8 0.024 0.036 0.027 0.167 0.153 0.146 19911111 191013.7 56.18 124.14 CLNS 87.00 9.3 0.054 0.063 0.075 0.878 0.700 0.313 19911111 191013.7 56.18 124.14 USZ 162.63 9.0 0.028 0.030 0.040 0.265 0.213 0.285 19911111 191013.7 56.18 124.14 UURS 113.72 8.8 0.041 0.041 0.040 0.169 0.307 0.171 19911111 191013.7 56.18 124.14 KROS 265.28 8.8 0.014 0.018 0.029 0.057 0.140 0.100 19911123 19 28 52.0 55.43 124.00 USZ 195.65 7.2 0.010 0.010 0.007 0.015 0.010 0.010 19911123 19 28 52.0 55.43 124.00 UURS 51.59 6.5 0.015 0.019 0.005 0.031 0.03 1 0.016 1991121 1923 31.3 53.89 126.73 KROS 62.12 8.8 0.028 0.014 0.038 0.750 0.600 0.480 1991121 1923 31.3 53.89 126.73 UURS 275.42 8.7 0.013 0.020 0.018 0.064 0.070 0.075 1991121 1923 31.3 53.89 126.73 USZ 440.93 9.2 0.010 0.010 0.010 0.065 0.076 0.057 1991122 1718345 56.80 123.83 USZ 139.34 7.2 0.003 0.005 0.004 0.032 0.034 0.035 1991122 17 18 34.5 56.80 123.83 UURS 171.16 7.5 0.006 0.009 0.008 0.021 0.047 0.033 1991122 19 47 16.1 57.50 126.70 USZ 326.33 8.8 0.011 0.008 0.005 0.085 0.080 0.061 1991122 1947161 57.50 126.70 UURS 325.33 8.4 0.01 1 0.015 0.010 0.030 0.059 0.033 1991122 19 47 16.1 57.50 126.70 CLNS 131.06 8.8 0.022 0.018 0.023 0.318 0.195 0.180 1991123 15 36 18.9 57.04 122.11 USZ 61.93 8.0 0.029 0.041 0.043 0.192 0.296 0.130 134 Date Origin Time Lat. Long. Station Dist. (km) Pg EW PgZ Sg NS Sg EW SgZ 1991123 15 36 18.9 57.04 122.11 UURS 205.35 7.7 0.005 0.011 0.031 0.024 0.040 19911225 14 53 4.2 56.79 123.91 CLNS 60.54 6.8 0.007 0.026 0.045 0.057 0.032 199487 20 50 26.5 57.46 128.13 CGD 204.82 7.0 0.004 0.015 0.011 1996212 18 56 59.9 57.52 120.77 CGD 593.68 11.6 0.216 0.090 1.081 1.289 0.615 199694 12 56 31.3 57.55 128.03 CGD 202.17 8.4 0.011 0.102 0.092 199694 12 5631.3 57.55 128.03 KROS 353.33 8.0 0.001 0.020 0.043 0.017 199721 20 39 18.4 54.28 124.82 KROS 141.22 9.0 0.052 0.068 0.340 0.210 0.310 199721 20 39 18.4 54.28 124.82 UURS 153.14 9.3 0.137 0.169 0.227 0.282 0.357 1997 21 20 39 18.4 54.28 124.82 CLNS 284.85 9.1 0.009 0.015 0.223 0.181 0.090 1997 325 20 48 48.2 56.56 121.04 USZ 33.78 7.3 0.172 0.333 0.537 0.305 0.389 1997 325 20 48 48.2 56.56 121.04 UURS 195.05 9.0 0.021 0.036 0.120 0.202 0.201 1997 325 20 48 48.2 56.56 121.04 CLNS 237.79 8.4 0.022 0.027 0.082 0.083 0.052 199751 2001 13.7 57.08 129.80 CGD 191.94 9.2 0.043 0.029 0.274 0.382 0.130 199751 20 01 13.7 57.08 129.80 CLNS 298.35 9.3 0.021 0.030 0.316 0.166 0.157 199751 20 01 13.7 57.08 129.80 KROS 343.62 9.0 0.013 0.023 0.077 0.140 0.100 1997510 14 33 0.5 54.25 122.84 USZ 268.92 9.7 0.029 0.124 0.211 0.269 0.268 1997 510 14 33 0.5 54.25 122.84 KROS 269.41 9.1 0.039 0.041 0.140 0.150 0.120 1997 510 14 33 0.5 54.25 122.84 CLNS 315.94 10.0 0.018 0.018 0.396 0.488 0.407 1997710 1912255 56.05 126.36 CLNS 125.63 9.0 0.015 0.030 0.352 0.377 0.184 1997710 19 12 25.5 56.05 126.36 KROS 184.70 9.2 0.019 0.320 0.140 0.210 1997710 1912255 56.05 126.36 USZ 299.67 8.3 0.010 0.011 0.058 0.031 0.056 199785 20 00 20.6 56.27 123.11 USZ 98.89 8.2 0.013 0.017 0.144 0.115 0.133 199785 20 00 20.6 56.27 123.11 UURS 108.11 8.3 0.012 0.069 0.081 0.067 0.143 199785 20 00 20.6 56.27 123.11 CLNS 126.75 8.2 0.018 0.027 0.151 0.090 0.048 1997811 1754 37.1 58.34 121.67 USZ 197.95 8.9 0.029 0.094 0.125 0.128 0.103 1997 811 17 5437.1 58.34 121.67 CLNS 254.78 9.0 0.011 0.011 0.262 0.247 0.105 135 Date Origin Time Lat. Long. Station Dist. (km) Pg EW PgZ Sg NS Sg EW 1997811 17 5437.1 58.34 121.67 UURS 351.04 8.9 0.012 0.008 0.038 0.072 1997 811 17 5437.1 58.34 121.67 KROS 544.14 8.6 0.002 0.008 0.028 1997 811 17 5437.1 58.34 121.67 CGD 520.99 8.8 0.007 0.007 0.057 0.050 1997 824 13 39 56.9 57.60 128.08 CGD 196.23 7.0 0.003 0.014 0.013 1997116 19 50 29.6 57.40 120.66 UURS 281.78 10.5 0.406 0.350 1.520 1.130 1997116 19 50 29.6 57.40 120.66 CLNS 263.50 10.9 0.717 1 .069 1.355 1.700 1997116 19 50 29.6 57.40 120.66 CGD 604.07 11.8 0.144 0.120 1 .600 1.150 1997116 19 50 29.6 57.40 1 20.66 YAK 719.69 11.0 0.240 0.335 2.575 2.600 199923 19 39 28.2 57.36 120.71 USZ 103.72 10.3 0.550 0.650 1.160 2.020 199923 19 39 28.2 57.36 120.71 CLNS 259.67 11.2 0.470 0.350 2.030 2.320 199923 19 39 28.2 57.36 120.71 UURS 276.41 10.7 0.260 0.286 1 .040 1 .660 199923 19 39 28.2 57.36 120.71 CGD 602.66 11.2 0.050 0.030 0.730 0.530 136 Explosions in the Southern Yakutia Region Date Origin Time Lat. Long. Station Dist. (km) K PgNS Pg EW PgZ Sg NS Sg EW SgZ 198613 082151.4 58.95 125.57 TUG 304.40 7.5 0.005 0.011 0.006 0.021 0.022 0.011 198613 082151.4 58.95 125.57 CLNS 238.05 7.5 0.020 0.007 0.025 0.040 0.030 0.025 198613 082151.4 58.95 125.57 CGD 291.21 8.4 0.007 0.008 0.014 0.058 0.030 0.027 198614 06 57 08.5 58.94 125.61 TUG 305.61 7.7 0.005 0.011 0.011 0.021 0.022 0.023 198614 06 57 08.5 58.94 125.61 CLNS 237.36 8.2 0.040 0.007 0.025 0.059 0.027 0.051 198614 06 57 08.5 58.94 125.61 USZ 356.17 7.5 0.007 0.003 0.003 0.014 0.013 0.006 198616 06 32 16.3 59.06 125.59 TUG 312.67 8.3 0.011 0.011 0.011 0.043 0.044 0.054 198616 06 32 16.3 59.06 125.59 CGD 290.79 9.0 0.029 0.027 0.030 0.144 0.054 0.060 198617 05 3911.1 58.89 125.63 CGD 287.57 8.5 0.029 0.041 0.061 0.072 0.054 0.061 198617 053911.1 58.89 125.63 TUG 303.34 7.5 0.005 0.006 0.011 0.011 0.006 198618 06 24 48.5 58.88 125.77 CGD 279.51 8.8 0.021 0.068 0.015 0.032 0.103 0.030 198619 05 12 34.0 56.77 124.72 USZ 192.64 10.1 0.149 0.303 0.291 0.500 0.316 0.514 198619 05 12 34.0 56.77 124.72 TUG 203.92 9.6 0.086 0.111 0.158 0.215 0.266 0.304 198619 05 12 34.0 56.77 124.72 UURS 188.33 10.1 0.181 0.034 0.184 0.480 0.513 0.214 198619 05 12 34.0 56.77 124.72 CGD 413.29 10.0 0.029 0.041 0.030 0.274 0.081 0.076 198619 08 26 58.7 56.74 124.91 CLNS 11.02 5.9 0.119 0.040 0.051 0.355 0.135 0.228 198619 08 26 58.7 56.74 124.91 TUG 215.97 6.8 0.005 0.006 0.011 0.011 0.011 198619 08 26 58.7 56.74 124.91 UURS 191.70 7.5 0.005 0.008 0.015 0.005 0.017 0.015 1986114 03 23 01.7 56.75 125.21 CLNS 21.30 7.0 0.045 0.148 0.126 0.317 0.349 0.354 1986114 07 23 07.7 59.00 125.68 CLNS 244.67 8.8 0.046 0.016 0.038 0.111 0.070 0.066 1986114 07 23 07.7 59.00 125.68 CGD 285.18 9.1 0.016 0.061 0.187 0.103 0.115 1986114 07 23 07.7 59.00 125.68 KROS 514.76 8.3 0.003 0.005 0.020 0.020 0.007 1986115 0704 31.7 56.80 124.72 USZ 193.00 8.5 0.040 0.050 0.045 0.068 0.046 0.088 1986115 070431.7 56.80 124.72 UURS 191.22 8.5 0.027 0.046 0.037 0.103 0.061 137 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ Sg NS Sg EW SgZ 1986115 070431.7 56.80 124.72 CLNS 11.81 6.5 0.119 0.108 0.177 0.553 0.296 0.607 1986115 07 0431.7 56.80 124.72 CGD 411.40 8.5 0.007 0.014 0.008 0.036 0.020 0.015 1986115 0704 31.7 56.80 124.72 TUG 202.96 8.6 0.032 0.044 0.039 0.064 0.056 0.067 1986118 05 03 15.7 56.58 127.90 KROS 246.24 9.3 0.005 0.020 0.050 0.023 0.180 0.200 1986118 05 03 15.7 56.58 127.90 USZ 386.50 10.6 0.176 0.278 0.257 0.392 0.303 0.413 1986118 05 03 15.7 56.58 127.90 UURS 324.60 10.6 0.139 0.034 0.092 0.288 0.718 0.367 1986118 05 03 15.7 56.58 127.90 CGD 290.49 9.0 0.045 0.216 0.136 1986118 05 03 15.7 56.58 127.90 TUG 397.11 10.5 0.150 0.155 0.225 0.192 0.288 0.349 1986121 05 25 43.7 58.92 125.61 CGD 288.79 8.5 0.014 0.020 0.012 0.040 0.046 0.024 1986 122 03 08 33.5 56.89 125.21 CLNS 19.67 7.0 0.119 0.067 0.040 0.553 0.283 1986 122 03 08 33.5 56.89 125.21 USZ 223.84 7.4 0.007 0.006 0.006 0.020 0.020 0.025 1986 122 03 08 33.5 56.89 125.21 UURS 215.83 7.9 0.021 0.017 0.015 0.021 0.034 0.046 1986 122 03 08 33.5 56.89 125.21 TUG 229.42 7.0 0.006 0.021 0.022 0.017 1986 123 06 47 48.8 56.83 124.72 USZ 193.40 9.4 0.216 0.076 0.190 0.176 0.114 0.134 1986 123 06 47 48.8 56.83 124.72 UURS 194.13 8.9 0.050 0.080 0.200 1986 123 06 47 48.8 56.83 124.72 CGD 409.53 9.6 0.022 0.041 0.030 0.115 0.081 0.045 1986 123 06 47 48.8 56.83 124.72 KROS 302.61 8.7 0.020 0.040 0.036 0.082 0.050 1986 123 06 47 48.8 56.83 124.72 TUG 202.04 9.3 0.064 0.111 0.079 0.128 0.177 0.124 1986 124 05 32 10.8 56.79 124.96 USZ 207.42 8.8 0.047 0.076 0.078 0.189 0.088 0.078 1986 124 05 32 10.8 56.79 124.96 UURS 198.01 7.7 0.064 0.034 0.092 0.053 0.085 0.122 1986 124 05 32 10.8 56.79 124.96 TUG 217.32 8.5 0.032 0.044 0.045 0.064 0.089 0.079 1986 124 05 32 10.8 56.79 124.96 CGD 400.03 8.7 0.022 0.008 0.029 0.041 0.023 1986 211 07 38 35.1 56.80 124.70 USZ 191.79 7.9 0.007 0.012 0.011 0.041 0.025 0.022 1986211 07 38 35.1 56.80 124.70 CLNS 12.95 5.4 0.020 0.020 0.013 0.119 0.094 0.126 1986 211 07 38 35.1 56.80 124.70 TUG 201.80 8.0 0.011 0.011 0.011 0.043 0.022 0.011 1986 211 07 38 35.1 56.80 124.70 UURS 190.61 7.5 0.011 0.007 0.016 0.034 0.015 138 Date Origin Time Lat. Long. Station Dist. (km) PgNS Pg EW PgZ SgNS Sg EW SgZ 1986212 0337181 56.64 125.02 USZ 210.11 9.8 0.041 0.134 0.111 0.351 0.253 0.145 1986 212 033718.1 56.64 125.02 TUG 225.87 9.3 0.064 0.044 0.079 0.150 0.133 0.192 1986 212 033718.1 56.64 125.02 UURS 186.62 8.7 0.043 0.061 0.017 0.107 0.092 0.103 1986 212 04 43 48.7 56.80 125.22 USZ 223.29 9.3 0.027 0.074 0.067 0.176 0.164 0.156 1986 212 04 43 48.7 56.80 125.22 TUG 232.33 8.7 0.043 0.022 0.045 0.064 0.067 0.101 1986 212 04 43 48.7 56.80 125.22 UURS 208.15 8.7 0.032 0.008 0.031 0.064 0.103 0.061 1986212 04 43 48.7 56.80 125.22 CGD 386.55 8.7 0.007 0.014 0.008 0.058 0.027 0.045 1986 212 07 4341.2 56.86 125.09 USZ 216.16 8.9 0.027 0.060 0.067 0.095 0.074 0.067 1986 212 0743 41.2 56.86 125.09 TUG 223.04 8.6 0.021 0.044 0.034 0.064 0.066 0.056 1986 212 0743 41.2 56.86 125.09 UURS 208.89 8.7 0.032 0.008 0.031 0.043 0.103 0.092 1986 212 0743 41.2 56.86 125.09 CGD 389.08 8.7 0.007 0.007 0.004 0.043 0.041 0.030 1986212 08 36 13.2 56.80 125.08 USZ 214.80 8.7 0.014 0.030 0.022 0.108 0.074 0.056 1986 212 08 36 13.2 56.80 125.08 UURS 203.08 8.0 0.032 0.008 0.015 0.021 0.034 0.061 1986 212 08 36 13.2 56.80 125.08 CGD 393 .44 8.4 0.007 0.007 0.008 0.029 0.014 0.014 1986213 06 00 37.8 58.43 126.00 CGD 269.97 9.0 0.029 0.027 0.015 0.130 0.204 0.152 1986 213 08 29 16.2 58.89 125.52 CGD 293.90 9.7 0.086 0.109 0.076 0.273 0.204 0.273 1986 213 08 29 16.2 58.89 125.52 USZ 348.57 8.0 0.007 0.007 0.003 0.027 0.015 0.011 1986 214 03 04 54.1 56.67 124.97 USZ 207.14 8.4 0.041 0.025 0.034 0.054 0.038 0.022 1986 214 03 04 54.1 56.67 124.97 TUG 221.88 8.5 0.021 0.022 0.034 0.042 0.044 0.034 1986 214 03 04 54.1 56.67 124.97 UURS 187.44 8.5 0.021 0.008 0.031 0.082 0.051 0.046 1986 214 07 1 1 00.0 56.67 124.97 CLNS 19.34 9.0 0.040 0.027 0.037 0.198 0.108 0.076 1986214 07 1 1 00.0 56.67 124.97 TUG 221.88 8.4 0.011 0.011 0.023 0.043 0.044 0.045 1986 214 07 1 1 00.0 56.67 124.97 UURS 187.44 8.0 0.011 0.008 0.015 0.011 0.017 0.031 1986 214 07 1 1 00.0 56.67 124.97 CGD 407.42 8.4 0.058 0.054 0.045 0.144 0.109 0.076 1986215 03 12 26.4 57.34 126.29 USZ 297.87 8.0 0.025 0.006 0.027 0.019 0.022 1986 215 03 12 26.4 57.34 126.29 TUG 289.09 8.0 0.005 0.005 0.011 0.021 0.022 0.025 139 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ Sg NS Sg EW SgZ 1986 215 03 12 26.4 57.34 126.29 UURS 295.67 8.4 0.021 0.031 0.021 0.034 0.031 1986 215 0607 41.4 58.89 125.72 USZ 356.62 8.0 0.003 0.003 0.027 0.013 0.011 1986 215 06 07 41.4 58.89 125.72 CLNS 233.16 8.2 0.020 0.025 0.049 0.081 0.038 1986 215 0607 41.4 58.89 125.72 TUG 307.61 8.2 0.005 0.011 0.043 0.033 0.034 1986 215 0607 41.4 58.89 125.72 CGD 282.40 9.2 0.072 0.030 0.187 0.176 0.091 1986 215 06 16 00.3 56.72 125.15 USZ 218.38 8.2 0.014 0.017 0.054 0.025 0.022 1986215 06 16 00.3 56.72 125.15 TUG 230.63 8.1 0.011 0.023 0.032 0.022 0.023 1986 215 06 16 00.3 56.72 125.15 UURS 198.52 8.5 0.021 0.031 0.051 0.068 0.061 1986 215 09 11 54.3 56.83 124.96 USZ 207.90 7.5 0.003 0.003 0.027 0.006 0.011 1986 215 09 11 54.3 56.83 124.96 TUG 216.15 6.5 0.003 0.005 0.011 0.006 1986 221 05 34 09.5 58.97 125.67 CGD 285.57 9.1 0.040 0.050 0.170 0.090 0.120 1986 221 05 34 09.5 58.97 125.67 CLNS 241.29 8.6 0.032 0.025 0.090 0.060 0.072 198631 03 0511.6 56.42 125.12 USZ 217.25 8.4 0.020 0.033 0.081 0.050 0.044 198631 0305116 56.42 125.12 CLNS 48.64 7.8 0.495 0.050 2.272 1.354 0.810 198631 030511.6 56.42 125.12 UURS 172.17 8.4 0.042 0.046 0.032 0.068 0.061 198631 03 10 30.5 57.00 125.00 USZ 213.37 10.3 0.027 0.078 0.081 0.063 0.055 198631 03 10 30.5 57.00 125.00 CLNS 18.75 5.4 0.165 0.164 1.033 1.482 0.708 198631 03 10 30.5 57.00 125.00 TUG 214.60 8.5 0.033 0.045 0.042 0.033 0.067 198631 03 10 30.5 57.00 125.00 UURS 219.03 8.4 0.042 0.046 0.021 0.051 0.046 198631 05 15 30.0 56.66 125.34 TUG 243.70 9.7 0.042 0.191 0.150 0.222 0.406 198631 05 15 30.0 56.66 125.34 UURS 200.88 9.9 0.256 0.245 0.459 0.650 0.521 198631 05 15 30.0 56.66 125.34 CGD 390.24 9.2 0.043 0.030 0.303 0.163 0.151 198634 05 35 03.3 58.94 125.69 CGD 284.28 9.3 0.072 0.060 0.158 0.122 0.106 198634 05 35 03.3 58.94 125.69 UURS 431.55 8.3 0.005 0.009 0.005 0.027 0.009 198634 05 35 03.3 58.94 125.69 TUG 309.36 7.0 0.005 0.015 0.010 0.011 0.011 19863 5 06 57 49.7 56.34 125.12 USZ 218.30 7.8 0.013 0.022 0.040 0.012 0.016 140 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ Sg NS Sg EW SgZ 19863 5 06 57 49.7 56.34 125.12 CLNS 57.22 7.7 0.019 0.040 0.063 0.119 0.067 0.101 19863 5 06 57 49.7 56.34 125.12 TUG 244.62 7.3 0.010 0.011 0.005 0.010 0.011 0.01 1 19863 7 04 47 02.8 57.00 125.00 TUG 214.60 8.4 0.021 0.033 0.045 0.032 0.066 0.045 19863 7 04 47 02.8 57.00 125.00 UURS 219.03 8.7 0.042 0.010 0.046 0.021 0.034 0.046 19863 7 04 47 02.8 57.00 125.00 CGD 384.93 8.5 0.004 0.004 0.004 0.043 0.013 0.007 19863 7 05 20 03.0 56.71 124.81 USZ 197.59 9.6 0.087 0.164 0.167 0.283 0.178 0.234 19863 7 05 20 03.0 56.71 124.81 TUG 211.19 9.3 0.064 0.111 0.146 0.085 0.133 0.169 19863 7 05 20 03.0 56.71 124.81 UURS 185.53 8.9 0.128 0.017 0.122 0.138 0.239 0.153 19863 7 05 20 03.0 56.71 124.81 CGD 412.65 9.9 0.021 0.040 0.022 0.260 0.061 0.075 198637 07 01 24.7 58.87 125.67 USZ 353.02 8.0 0.006 0.007 0.005 0.027 0.022 0.016 19863 7 07 01 24.7 58.87 125.67 CLNS 230.39 8.5 0.039 0.013 0.025 0.099 0.094 0.075 19863 7 07 01 24.7 58.87 125.67 TUG 303.99 8.0 0.006 0.011 0.011 0.021 0.022 0.033 19863 7 07 01 24.7 58.87 125.67 CGD 285.25 9.2 0.115 0.113 0.075 0.176 0.163 0.090 19863 8 03 08 14.9 56.82 124.90 USZ 204.14 7.7 0.006 0.006 0.016 0.033 0.012 0.016 19863 8 03 08 14.9 56.82 124.90 TUG 212.92 7.6 0.006 0.006 0.005 0.021 0.022 0.016 19863 9 06 10 22.2 56.82 125.00 CLNS 6.47 6.4 0.079 0.040 0.003 1.190 0.862 198639 06 10 22.2 56.82 125.00 USZ 210.19 8.0 0.006 0.007 0.021 0.027 0.029 0.033 198639 06 10 22.2 56.82 125.00 TUG 218.80 7.5 0.006 0.011 0.005 0.010 0.022 0.022 198639 06 10 22.2 56.82 125.00 UURS 202.14 8.3 0.010 0.010 0.030 0.021 0.051 0.030 19864 3 05 52 34.5 58.94 125.35 USZ 346.04 8.8 0.013 0.007 0.005 0.067 0.044 0.033 198643 05 52 34.5 58.94 125.35 TUG 293.63 8.4 0.010 0.022 0.016 0.064 0.044 0.050 198643 05 52 34.5 58.94 125.35 CGD 303.79 10.2 0.016 0.030 0.245 0.149 0.090 198644 05 46 58.4 57.76 124.70 TUG 199.94 9.3 0.085 0.255 0.112 0.085 0.155 0.090 198644 05 46 58.4 57.76 124.70 USZ 230.09 10.0 0.114 0.312 0.290 0.310 0.208 0.227 198645 04 05 04.1 58.88 125.51 CGD 294.45 8.6 0.021 0.040 0.022 0.075 0.054 0.113 1986 422 04 06 35.6 56.62 125.00 KROS 273.92 9.4 0.021 0.219 0.074 0.155 141 Date Origin Time Lat. Long. Station Dist. (km) PgNS Pg EW PgZ Sg NS Sg EW SgZ 198672 040751.] 56.89 124.74 CLNS 11.23 7.2 0.051 0.048 0.073 1.877 0.996 0.808 198672 040751.] 56.89 124.74 USZ 195.61 9.0 0.040 0.095 0.057 0.092 0.129 0.154 198672 040751.] 56.89 124.74 TUG 201.56 9.0 0.010 0.043 0.046 0.106 0.142 0.105 198672 040751.] 56.89 124.74 UURS 200.55 8.9 0.019 0.019 0.009 0.107 0.153 0.027 198676 02 13 38.3 56.66 125.24 CLNS 28.80 7.4 0.020 0.016 0.036 0.367 0.162 0.146 198678 03 51 59.6 56.88 125.83 USZ 261.11 9.4 0.056 0.135 0.105 0.245 0.202 0.192 198678 03 51 59.6 56.88 125.83 CLNS 56.73 10.0 0.408 0.235 0.585 2.693 1 .008 1.224 1986711 05 45 28.5 56.86 125.19 USZ 222.19 7.2 0.005 0.006 0.005 0.010 0.011 0.010 1986 713 07 16 27.2 55.09 124.68 USZ 253.00 7.0 0.005 0.004 0.007 0.010 0.009 0.009 1986715 04 32 05.9 56.80 125.10 USZ 216.0] 8.6 0.010 0.045 0.029 0.051 0.079 0.077 1986715 04 32 05.9 56.80 125.10 CLNS 12.95 5.8 0.031 0.101 0.067 0.184 0.158 0.231 1986715 04 32 05.9 56.80 125.10 TUG 225.26 8.8 0.01 1 0.022 0.023 0.085 0.088 0.105 1986 715 04 32 05.9 56.80 125.10 UURS 203.79 9.4 0.029 0.010 0.009 0.137 0.269 0.036 1986715 04 32 05.9 56.80 125.10 KROS 289.14 8.8 0.006 0.005 0.010 0.007 0.010 0.015 198681 05 47 45.1 56.75 124.89 USZ 202.77 8.5 0.020 0.034 0.029 0.051 0.068 0.048 198681 05 47 45.1 56.75 124.89 TUG 214.48 8.9 0.02] 0.005 0.035 0.085 0.131 0.047 198687 03 48 58.0 56.75 124.56 USZ 182.72 9.8 0.082 0.225 0.193 0.410 0.270 0.308 1986 8 7 03 48 58.0 56.75 124.56 TUG 195.3] 9.6 0.149 0.219 0.117 0.213 0.307 0.164 198687 03 48 58.0 56.75 124.56 CGD 422.60 10.3 0.059 0.039 0.007 0.355 0.131 0.072 1986811 05 50 06.6 56.85 125.00 USZ 210.59 8.7 0.030 0.039 0.024 0.081 0.084 0.087 1986 811 05 50 06.6 56.85 125.00 CLNS 6.08 6.1 0.163 0.235 0.255 1.530 0.956 0.703 1986811 05 50 06.6 56.85 125.00 CGD 394.21 9.2 0.011 0.013 0.106 0.028 0.026 1986814 04 55 10.0 59.84 125.07 TUG 353.67 8.5 0.006 0.030 0.005 0.032 0.043 0.023 1986 814 04 55 10.0 59.84 125.07 CGD 337.49 9.6 0.071 0.045 0.007 0.260 0.117 0.050 1986912 03 48 36.5 56.76 124.69 CLNS 15.61 8.5 1.100 2.880 1.620 1986 912 03 48 36.5 56.76 124.69 USZ 190.72 9.5 0.170 0.260 0.220 142 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW SgZ 1986 912 03 48 36.5 56.76 124.69 TUG 202.51 9.5 0.140 0.170 0.290 1986 924 00 56 15.3 56.61 125.10 CLNS 28.34 7.2 0.036 0.140 0.178 0.365 198734 06 48 08.0 56.54 124.89 CLNS 33.38 8.9 0.932 2.163 0.883 198734 06 48 08.0 56.54 124.89 CGD 420.12 10.0 0.022 0.355 0.117 1987 420 06 22 02.3 56.77 124.75 TUG 205.66 9.5 0.082 0.149 0.219 0.164 1987 420 06 22 02.3 56.77 124.75 UURS 189.26 9.7 0.109 0.245 0.422 0.345 198756 07 43 34.4 57.09 125.34 CLNS 38.53 7.0 0.119 0.126 0.120 0.128 198756 07 43 34.4 57.09 125.34 TUG 233.58 8.0 0.009 0.050 0.048 0.036 198756 07 43 34.4 57.09 125.34 USZ 235.61 7.8 0.012 0.037 0.022 0.031 1987515 02 40 06.6 57.23 125.22 CLNS 47.53 7.2 0.037 0.079 0.090 0.192 1987515 03 30 10.8 56.92 124.75 UURS 203.78 10.5 0.145 0.176 1.190 0.254 1987 515 04 57 05.4 58.90 125.77 CLNS 234.87 9.0 0.027 0.079 0.113 0.164 1987 525 071215.9 55.04 124.73 TUG 3 19.46 7.0 0.004 0.008 0.011 0.004 1987 527 02 42 07.0 55.1] 126.98 UURS 239.81 8.] 0.027 0.024 0.019 0.027 1987 527 02 42 07.0 55.11 126.98 CLNS 231.94 8.3 0.037 0.009 0.039 0.037 1987 529 03 34 26.0 56.59 124.85 USZ 199.67 9.9 0.058 0.184 0.564 0.250 1987 529 03 34 26.0 56.59 124.85 TUG 218.08 9.] 0.057 0.070 0.151 0.134 198763 05 42 38.7 58.97 125.57 CGD 291.30 9.8 0.032 0.400 0.130 0.061 198763 05 42 38.7 58.97 125.57 CLNS 240.24 8.5 0.007 0.063 0.072 0.011 198764 07 45 25.2 58.71 125.61 CGD 289.08 9.2 0.012 0.180 0.125 0.058 198764 07 45 25.2 58.71 125.6] TUG 291 .43 8.6 0.009 0.034 0.061 0.025 198765 04 59 47.9 56.91 124.66 TUG 196.33 9.0 0.084 0.110 0.110 0.130 198765 04 59 47.9 56.91 124.66 USZ 191.20 9.2 0.040 0.270 0.170 0.210 198765 04 59 47.9 56.91 124.66 UURS 200.24 9.6 0.051 0.250 0.330 0.170 198765 04 59 47.9 56.91 124.66 KROS 312.17 9.1 0.024 0.040 0.100 0.060 1987 67 08 00 30.1 57.19 125.07 USZ 222.70 7.5 0.006 0.015 0.007 0.006 143 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ Sg NS Sg EW 198767 08 00 30.1 57.19 125.07 CLNS 40.27 6.5 0.009 0.016 0.128 198767 08 00 30.1 57.19 125.07 TUG 216.34 7.8 0.008 0.017 0.026 0.006 198767 08 00 30.1 57.19 125.07 UURS 239.43 7.5 0.008 0.007 0.004 0.019 198768 05 46 23.8 56.41 124.79 USZ 197.16 9.4 0.015 0.029 0.287 0.101 198768 05 46 23.8 56.41 124.79 TUG 222.96 8.7 0.008 0.022 0.054 0.109 198768 05 46 23.8 56.41 124.79 UURS 157.80 9.2 0.039 0.027 0.186 0.135 1987610 08 27 26.6 57.09 125.09 USZ 220.91 7.7 0.004 0.017 0.020 0.011 1987610 08 27 26.6 57.09 125.09 TUG 218.57 7.8 0.011 0.013 0.017 0.032 1987610 08 27 26.6 57.09 125.09 UURS 230.42 7.7 0.015 0.014 0.015 0.023 1987616 02 55 43.9 59.28 126.55 CGD 240.21 9.0 0.055 0.017 0.240 0.150 1987 717 03 27 42.3 56.79 125.29 USZ 227.44 9.0 0.029 0.082 0.127 0.150 1987 717 03 27 42.3 56.79 125.29 CLNS 24.40 8.5 0.127 0.238 2.058 1.052 1987717 03 27 42.3 56.79 125.29 TUG 236.73 9.4 0.064 0.045 0.129 0.130 1987 717 03 27 42.3 56.79 125.29 UURS 209.92 9.4 0.047 0.058 0.094 0.220 198792 06 23 26.9 58.91 125.65 CGD 286.47 8.6 0.059 0.011 0.166 0.078 1987916 03 17 08.3 57.36 125.43 UURS 266.72 8.7 0.005 0.013 0.019 0.037 19871016 04 54 33.7 58.99 125.47 CGD 297.13 8.5 0.017 0.007 0.047 0.061 19871224 06 04 10.7 56.36 121.31 USZ 28.30 6.2 0.015 0.018 0.050 0.084 1988 326 08 43 20.2 57.33 124.90 USZ 218.19 7.7 0.010 0.010 0.020 0.020 1988 326 08 43 20.2 57.33 124.90 TUG 205.63 7.5 0.012 0.014 0.014 1988516 01 1316.3 57.00 125.07 USZ 217.52 6.5 0.007 0.005 0.007 0.009 1988 823 05 15 34.9 53.59 124.66 UURS 211.90 7.7 0.006 0.006 0.027 0.026 1990 823 06 10 29.7 57.22 124.88 USZ 212.82 7.2 0.004 0.004 0.014 0.010 1990 823 06 10 29.7 57.22 124.88 UURS 237.03 7.3 0.004 0.006 0.013 0.013 1990 823 10 32 26.6 58.73 125.88 TUG 305.96 9.1 0.020 0.032 0.195 0.120 1990 823 10 32 26.6 58.73 125.88 USZ 351.16 8.1 0.006 0.008 0.019 0.030 144 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ Sg NS Sg EW SgZ 19901023 1010473 56.03 125.03 UURS 139.79 7.1 0.003 0.005 0.006 0.013 0.015 0.028 1990115 09 49 49.3 56.02 125.50 UURS 164.16 7.5 0.017 0.018 0.019 0.025 0.026 0.028 19901130 09 38 05.4 56.1] 125.63 UURS 1 76.06 7.0 0.005 0.003 0.004 0.025 0.014 0.008 19901212 03 23 30.9 56.12 125.73 UURS 182.01 7.6 0.012 0.010 0.018 0.031 0.025 0.025 1991 110 05 54 44.3 56.14 125.15 UURS 152.99 6.6 0.004 0.008 0.010 1991221 08 50 39.0 56.48 124.87 UURS 166.93 6.6 0.008 0.003 0.003 0.009 0.011 0.014 1991 522 04 46 26.1 56.23 125.48 UURS 175.40 6.9 0.008 0.006 0.007 0.013 0.012 0.013 1991 524 0102 01.6 56.36 125.59 UURS 189.45 6.8 0.005 0.004 0.003 0.008 0.009 0.011 1991613 06 02 18.4 57.11 122.20 USZ 71.40 6.6 0.009 0.008 0.010 0.030 0.012 0.026 1993 222 0831 10.1 56.23 125.33 USZ 233.07 7.0 0.005 0.005 0.005 0.018 0.019 0.010 199512 01 01 47.8 56.68 124.63 CLNS 24.21 4.8 0.003 0.003 0.003 0.015 0.006 0.009 1995118 05 04 16.3 59.54 125.00 CGD 332.19 6.9 0.013 0.002 0.002 0.027 0.026 0.017 1995 120 05 28 25.2 58.00 125.24 CGD 324.46 6.9 0.013 0.013 0.010 0.054 0.026 0.027 1995120 05 28 25.2 58.00 125.24 CGD 324.46 8.0 0.002 0.013 0.005 0.027 0.019 0.027 199544 06 58 60.2 55.14 125.16 UURS 124.60 5.8 0.004 0.007 0.004 0.095 0.096 0.147 1995 411 07 07 32.3 57.40 125.25 USZ 240.57 6.6 0.001 0.003 0.001 0.033 0.018 0.030 1995 422 02 57 57.8 59.00 125.60 CLNS 243.83 8.2 0.015 0.015 0.006 0.051 0.024 1995 628 03 21 15.8 58.87 125.84 CGD 275.47 7.1 0.009 0.009 0.005 0.038 0.028 0.028 1995 728 05 48 37.0 53.57 124.63 UURS 213.08 7.2 0.004 0.002 0.007 0.021 0.018 0.015 1996111 06 30 6.7 58.94 125.52 CGD 294.03 8.4 0.005 0.029 0.014 0.051 0.074 0.027 199626 06 48 08.7 59.04 125.45 CGD 298.6] 8.3 0.005 0.013 0.008 0.073 0.053 0.027 19963 7 04 50 39.6 58.99 125.73 CGD 282.25 8.4 0.005 0.013 0.004 0.054 0.053 0.049 1996316 042810.] 58.86 125.61 CGD 288.69 8.6 0.008 0.026 0.017 0.108 0.060 0.057 1996 411 05 20 30.8 58.78 125.63 CGD 287.62 8.7 0.008 0.026 0.017 0.125 0.048 0.067 1996418 06 39 07.9 59.00 125.73 CLNS 245.25 8.1 0.015 0.012 0.015 0.033 0.045 0.018 1996 418 06 39 07.9 59.00 125.73 CGD 282.32 8.3 0.009 0.024 0.019 0.048 0.034 0.048 145 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ Sg NS Sg EW SgZ 1996 430 03 51 42.0 58.70 126.00 KROS 479.02 8.7 0.003 0.004 0.009 0.005 1996123 04 17 22.6 56.76 124.77 USZ 195.57 7.7 0.011 0.028 0.029 0.013 0.024 199612 3 04 17 22.6 56.76 124.77 UURS 188.95 7.4 0.012 0.021 0.014 0.026 0.014 1996124 05 38 57.4 58.85 125.81 CGD 277.18 7.8 0.009 0.034 0.029 0.029 199714 06 49 49.6 57.01 125.00 CLNS 19.88 6.2 0.015 0.015 0.241 0.181 0.105 199714 06 49 49.6 57.0] 125.00 USZ 213.59 7.5 0.004 0.011 0.029 0.029 0.028 1997218 055111.4 53.43 124.76 UURS 230.82 7.6 0.005 0.009 0.024 0.024 0.026 19973 5 02 18 38.0 53.61 124.84 USZ 387.93 6.9 0.005 0.009 0.005 0.005 0.005 19973 5 02 18 38.0 53.61 124.84 CLNS 359.36 7.3 0.005 0.009 0.007 0.015 0.007 1997 327 02 58 22.1 58.65 125.31 KROS 480.71 8.0 0.006 0.007 0.011 0.009 1997 327 02 58 22.1 58.65 125.31 USZ 321.03 7.4 0.005 0.005 0.01 1 0.012 0.014 1997 327 02 58 22.1 58.65 125.31 CGD 306.83 8.8 0.034 0.059 0.257 0.082 0.092 199742 02 21 2.4 53.68 124.77 UURS 206.28 8.1 0.012 0.018 0.036 0.030 0.059 199742 04 09 56.1 53.68 125.42 UURS 229.66 7.7 0.006 0.003 0.024 0.036 0.024 1997416 04 3221.7 53.77 124.78 UURS 197.86 7.5 0.006 0.006 0.024 0.024 0.024 2000 517 08 43 26.3 56.92 124.92 KROS 305.90 8.8 0.011 0.011 0.021 0.041 0.025 2000 517 08 43 26.3 56.92 124.92 USZ 206.94 8.6 0.029 0.057 0.030 0.058 0.068 2000 519 04 15 46.9 58.79 125.81 USZ 352.65 7.4 0.001 0.001 0.018 0.011 0.010 2000 519 04 15 46.9 58.79 125.8] CGD 277.23 8.7 0.033 0.020 0.115 0.073 0.055 146 Earthquakes in the Magadan and Northern Yakutia Region Date Origin Time Lat. Long. Station Dist. (km) K PgNS Pg EW PgZ SgNS Sg EW SgZ 1985 124 20 26 34.0 66.92 132.96 MOMR 453.74 11.1 0.042 0.050 0.077 0.357 0.840 0.480 I985 124 20 26 34.0 66.92 132.96 KHG 490.62 11.5 0.245 0.083 0.213 1.024 0.735 0.375 1985 124 20 26 34.0 66.92 132.96 UNIS 536.51 10.9 0.053 0.059 0.082 0.495 0.281 0.257 1985 124 20 26 34.0 66.92 132.96 YAK 567.72 11.6 0.243 0.087 0.265 0.596 1 .020 0.287 1986615 1 1 02 48.4 63.17 145.05 SUU 162.51 8.2 0.010 0.100 0.060 0.050 1986 615 1 1 02 48.4 63.17 145.05 UNIS 179.10 8.9 0.080 0.040 0.090 0.150 0.070 0.130 1986615 1 1 02 48.4 63.17 145.05 SEY 370.38 8.3 0.006 0.011 0.011 0.028 0.017 0.022 1986 727 11 25 40.8 64.60 147.10 UNIS 184.91 10.6 0.390 0.700 0.520 0.790 1.100 0.580 1986 727 11 25 40.8 64.60 147.10 SUU 208.91 10.2 0.130 0.130 0.340 0.670 0.690 I986 727 11 25 40.8 64.60 147.10 MOMR 274.02 10.0 0.055 0.048 0.102 0.483 0.449 0.447 1986 727 11 25 40.8 64.60 147.10 DBI 310.03 10.3 0.070 0.050 0.100 0.410 0.430 0.400 1986 727 11 25 40.8 64.60 147.10 SEY 318.96 10.8 0.044 0.067 0.089 0.756 0.522 0.689 1986 727 11 25 40.8 64.60 147.10 KHG 609.27 11.2 0.026 0.035 0.031 0.613 0.335 0.357 1986 727 12 55 5.8 64.53 147.18 UNIS 188.97 8.3 0.010 0.024 0.022 0.092 0.024 0.085 1986 727 12 55 5.8 64.53 147.18 SEY 311.54 8.0 0.006 0.006 0.006 0.022 0.022 0.017 1986810 1111595 63.55 147.80 SUU 87.38 9.4 0.060 0.030 0.060 0.330 0.600 0.300 1986 810 1111595 63.55 147.80 DBI 201.08 10.2 0.100 0.160 0.700 0.300 0.170 I986 810 1111595 63.55 147.80 SEY 239.46 8.1 0.022 0.056 0.056 0.444 0.233 0.372 1986 810 1111595 63.55 147.80 UNIS 249.50 9.6 0.039 0.050 0.025 0.294 0.121 0.326 1986 810 1111595 63.55 147.80 MGD 419.00 10.4 0.030 0.390 0.230 0.100 19861029 144016.3 63.82 149.77 SEY 163.32 8.1 0.011 0.011 0.011 0.057 0.046 0.023 19861111 17 58 6.8 63.78 145.72 UNIS 149.10 9.4 0.090 0.120 0.060 0.300 0.300 0.100 19861111 17 58 6.8 63.78 145.72 SUU 164.68 9.7 0.170 0.090 0.150 0.320 0.540 0.360 19861111 17 58 6.8 63.78 145.72 SEY 345.25 9.2 0.011 0.011 0.011 0.103 0.046 0.057 147 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ Sg NS Sg EW SgZ 1987119 172815.7 64.06 148.18 SUU 142.35 7.6 0.009 0.009 0.027 0.036 0.018 1987119 172815.7 64.06 148.18 DB] 230.80 7.9 0.010 0.010 0.021 0.031 0.021 1987119 172815.7 64.06 148.18 SEY 243.29 8.0 0.006 0.011 0.028 0.022 0.022 1987119 172815.7 64.06 148.18 UNIS 245.28 7.6 0.010 0.010 0.020 0.030 0.010 198763 163413.5 63.65 149.81 SEY 151.28 8.1 0.005 0.010 0.070 0.040 0.050 198763 1634135 63.65 149.81 DBI 153.39 7.8 0.007 0.015 0.030 0.037 0.030 198763 1634135 63.65 149.81 DB] 153.39 7.6 0.020 0.030 0.030 198763 1634135 63.65 149.81 SNE 177.64 7.6 0.007 0.020 0.027 0.020 198763 1634135 63.65 149.81 NKB 262.51 7.5 0.005 0.005 0.010 0.014 0.010 1987 728 171732.] 61.82 145.56 SEY 372.82 7.8 0.005 0.015 0.010 0.020 1987815 174317.6 62.93 145.05 UNIS 202.86 7.7 0.018 0.026 0.043 0.055 0.045 1987 815 174317.6 62.93 145.05 SEY 370.96 7.8 0.005 0.005 0.015 0.010 0.010 1987 822 17 22 34.0 63.42 149.71 DBI 131.34 7.5 0.007 0.007 0.030 0.030 0.022 1987 822 17 22 34.0 63.42 149.71 SEY 144.62 7.7 0.005 0.005 0.040 0.040 0.030 1987 925 15 30 9.8 64.34 147.74 SUU 174.67 7.8 0.040 0.010 0.030 0.050 0.020 1987 925 15 30 9.8 64.34 147.74 UNIS 217.89 7.8 0.005 0.010 0.027 0.013 0.030 1987 925 15 30 9.8 64.34 147.74 DBI 268.54 8.1 0.007 0.007 0.030 0.030 0.030 1987 925 15 30 9.8 64.34 147.74 SEY 277.51 7.8 0.005 0.005 0.020 0.020 0.020 1987 925 15 30 9.8 64.34 147.74 SNE 286.82 7.8 0.012 0.012 0.023 0.046 0.023 1987 925 15 30 9.8 64.34 147.74 NKB 338.54 8.2 0.008 0.007 0.015 0.030 0.022 1987 930 19 04 28.4 62.38 145.19 SUU 157.99 8.2 0.030 0.100 0.080 0.080 1987 930 19 04 28.4 62.38 145.19 NKB 222.51 9.5 0.015 0.015 0.218 0.194 0.127 1987 930 19 04 28.4 62.38 145.19 SNE 278.21 8.9 0.012 0.012 0.070 0.081 0.046 1987 930 19 04 28.4 62.38 145.19 DBI 286.96 8.3 0.007 0.015 0.030 0.030 0.037 1987 930 19 04 28.4 62.38 145.19 MOMR 464.36 9.1 0.055 0.086 0.180 0.019 0.015 1987114 18 21 22.3 62.46 146.03 SUU 114.10 7.7 0.006 0.006 0.035 0.034 0.034 148 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg 5w PgZ Sg NS Sg EW SgZ 1987114 1821223 62.46 146.03 SNE 236.16 7.8 0.012 0.023 0.023 0.023 19871129 20 28 3.5 63.99 149.03 SUU 141.54 8.2 0.009 0.009 0.008 0.036 0.089 0.062 19871129 20 28 3.5 63 .99 149.03 SSY 160.03 8.2 0.036 0.025 0.038 0.097 0.090 0.090 19871129 20 28 3.5 63.99 149.03 ZYR 194.94 8.4 0.018 0.022 0.027 0.042 0.074 0.044 19871129 20 28 3.5 63.99 149.03 DB] 202.98 8.0 0.007 0.007 0.007 0.030 0.030 0.030 1987127 10 50 58.6 63.68 145.56 UNIS 150.11 10.2 0.340 0.370 0.480 0.870 1.110 1.380 1987127 10 50 58.6 63.68 145.56 SUU 163.80 10.9 0.480 0.3 75 0.405 1.815 1 .000 0.792 1987127 10 50 58.6 63.68 145.56 DB] 301.45 10.6 0.067 0.082 0.105 0.702 0.530 0.456 1987127 10 50 58.6 63.68 145.56 SNE 307.67 10.5 0.093 0.116 0.093 0.278 0.719 0.418 1987127 10 50 58.6 63.68 145.56 MOMR 328.85 10.6 0.045 0.050 0.090 0.350 0.360 0.170 1987127 10 50 58.6 63.68 145.56 ZYR 301.06 10.9 0.064 0.180 0.150 0.830 0.640 0.500 198712 7 10 50 58.6 63.68 145.56 NZD 352.64 11.1 0.210 0.260 0.260 0.310 0.340 0.430 198712 7 10 50 58.6 63.68 145.56 OMS 529.61 10.0 0.020 0.150 0.120 19871220 1826105 62.22 146.05 SUU 124.54 9.1 0.036 0.098 0.097 0.205 0.161 0.106 19871220 1826105 62.22 I 46.05 SNE 232.84 9.8 0.023 0.035 0.035 0.302 0.232 0.371 19871220 1826105 62.22 146.05 DBI 243.58 9.3 0.007 0.022 0.030 0.149 0.097 0.082 19871220 1826105 62.22 146.05 UNIS 296.38 8.5 0.013 0.011 0.027 0.056 0.054 0.062 19871226 12 23 55.2 62.21 146.03 SUU 126.00 8.4 0.018 0.027 0.026 0.071 0.089 0.044 19871226 12 23 55.2 62.21 146.03 NKB 175.53 8.1 0.015 0.019 0.015 0.039 0.048 0.039 19871226 12 23 55.2 62.21 146.03 SNE 233.85 8.9 0.012 0.023 0.023 0.081 0.093 0.104 1988119 103532.] 63.71 145.68 UNIS 152.38 9.5 0.080 0.090 0.010 0.600 0.3 80 0.650 1988119 10 35 32.1 63.71 145.68 SUU 161.17 10.4 0.205 0.107 0.176 0.943 0.911 0.757 1988119 103532.] 63.71 145.68 DBI 297.79 10.0 0.030 0.050 0.060 0.430 0.130 1988119 103532.] 63.71 145.68 SEY 345.54 10.0 0.020 0.030 0.035 0.220 0.170 0.220 1988119 103532.] 63.71 145.68 ZYR 294.74 9.6 0.051 0.050 0.053 0.670 0.250 0.080 1988119 103532.] 63.71 145.68 MYA 415.82 10.8 0.017 0.025 0.025 0.215 0.263 0.215 149 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ Sg NS Sg EW 1988119 103532.] 63.71 145.68 MGD 485.72 10.6 0.020 0.270 0.190 1988 122 12 51 56.5 62.20 146.03 DB] 244.83 9.1 0.050 0.210 0.070 1988 122 12 51 56.5 62.20 146.03 SEY 335.47 8.6 0.005 0.015 0.050 0.025 I988 122 12 5156.5 62.20 146.03 UNIS 297.90 8.9 0.020 0.036 0.100 0.084 1988 122 12 51 56.5 62.20 146.03 MGD 347.92 9.5 0.002 0.190 0.080 1988 122 12 51 56.5 62.20 146.03 MYA 329.92 9.8 0.008 0.017 0.198 0.164 1988 328 1321183 63.92 149.41 SUU 141.51 8.3 0.018 0.018 0.071 0.080 1988 328 1321183 63.92 149.41 SEY 184.14 8.3 0.010 0.015 0.060 0.050 198862 14 56 28.5 62.38 145.19 SUU 157.99 9.5 0.053 0.106 0.231 0.223 198862 14 56 28.5 62.38 145.19 UNIS 261 .96 8.9 0.052 0.050 0.104 0.102 198862 14 56 28.5 62.38 145.19 SEY 372.40 9.2 0.015 0.023 0.076 0.038 198862 14 56 28.5 62.38 145.19 MYA 376.79 10.0 0.017 0.017 0.182 0.214 198862 14 56 28.5 62.38 145.19 MYA 376.79 9.5 0.020 0.170 0.190 1988614 14 44 44.2 63.37 149.50 SUU 94.52 9.8 0.098 0.106 0.614 0.661 1988614 14 44 44.2 63.37 149.50 SEY 152.70 10.2 0.080 0.200 1 .400 0.700 1988 614 14 44 44.2 63.37 149.50 NKB 229.07 9.0 0.048 0.049 0.116 0.105 1988 614 14 44 44.2 63.37 149.50 MYA 255.36 10.0 0.079 0.118 0.330 0.352 1988614 14 44 44.2 63.37 149.50 SSY 230.84 9.3 0.069 0.067 0.140 0.220 1988614 14 44 44.2 63.37 149.50 UNIS 333.71 9.7 0.050 0.040 0.190 0.140 1988614 14 44 44.2 63.37 149.50 MGD 375.38 10.3 0.070 0.360 0.200 1988 614 14 44 44.2 63.37 149.50 ULZS 319.12 9.3 0.046 0.026 0.250 0.230 1988615 1524194 64.56 145.36 SSY 104.89 7.7 0.023 0.025 0.065 0.080 1988615 1524194 64.56 145.36 UNIS 101.88 8.4 0.013 0.036 0.155 0.140 1988615 1524 19.4 64.56 145.36 SEY 389.77 8.6 0.005 0.010 0.030 0.030 19881025 10 12 52.8 62.87 148.85 SUU 36.99 8.7 0.192 0.245 0.587 0.874 19881025 10 12 52.8 62.87 148.85 SEY 179.08 10.6 0.103 0.235 1.471 0.647 150 Date Origin Time Lat. Long. Station Dist. (km) PgNS PgZ Sg NS Sg EW SgZ 19881025 1012528 62.87 148.85 UNIS 334.92 9.6 0.050 0.040 0.150 0.110 0.210 1988112 144955.] 62.25 145.04 ATKR 214.82 8.3 0.032 0.061 0.065 0.046 1988112 144955.] 62.25 145.04 NKB 222.65 8.9 0.010 0.010 0.116 0.116 0.049 1988112 144955.] 62.25 145.04 UNIS 272.96 8.0 0.011 0.016 0.022 0.034 0.033 1988112 144955.] 62.25 145.04 SSY 338.69 8.0 0.004 0.013 0.018 0.039 0.043 1988112 144955.] 62.25 145.04 SEY 383.36 8.5 0.008 0.008 0.030 0.030 0.030 1989 321 10 53 5.2 64.91 145.19 SUU 277.74 9.8 0.110 0.190 0.200 0.230 1989 321 10 53 5.2 64.91 145.19 SEY 414.44 10.3 0.015 0.020 0.275 0.150 0.150 1989 321 10 53 5.2 64.91 145.19 NZD 403.89 10.5 0.057 0.038 0.121 0.142 0.153 198956 19 56 26.4 62.29 145.43 DB] 275.02 9.2 0.020 0.130 0.040 198956 19 56 26.4 62.29 145.43 UNIS 275.85 8.5 0.010 0.020 0.040 0.070 0.050 1989 5 6 19 56 26.4 62.29 145.43 SEY 362.70 8.3 0.005 0.005 0.030 0.020 0.035 1989 531 20 37 55.1 63.89 148.33 SUU 123.75 8.9 0.090 0.060 0.210 0.290 1989 531 20 37 55.1 63.89 148.33 DBI 211.17 9.1 0.030 0.060 0.150 0.160 1989 531 20 37 55.1 63.89 148.33 SEY 228.04 7.7 0.010 0.020 0.280 0.230 1989 531 20 37 55.1 63.89 148.33 UNIS 257.91 9.0 0.020 0.020 0.110 0.100 1989 531 20 37 55.1 63.89 148.33 NKB 285.17 9.1 0.060 0.030 0.090 0.130 1989616 19 40 45.7 61.02 145.44 NKB 184.01 9.5 0.070 0.050 0.450 0.250 1989 616 19 40 45.7 61.02 145.44 SUU 241.85 9.6 0.030 0.030 0.190 0.280 1989 616 19 40 45.7 61.02 145.44 MGD 308.98 10.3 0.030 0.440 0.280 1989616 19 40 45.7 61.02 145.44 DBI 316.26 9.7 0.030 0.130 0.190 1989 616 19 40 45.7 61.02 145.44 UNIS 410.14 9.7 0.020 0.030 0.050 0.060 1989616 19 40 45.7 61.02 145.44 SEY 420.34 9.5 0.010 0.015 0.100 0.065 1989714 140051.4 63.69 145.46 UNIS 145.72 8.9 0.030 0.040 0.240 0.120 1989 714 14 00 51.4 63.69 145.46 SUU 168.45 9.1 0.060 0.090 0.210 0.150 I989 714 140051.4 63.69 145.46 NKB 313.17 8.7 0.030 0.050 0.050 0.070 151 Date Origin Time Lat. Long. Station Dist. (km) PgZ Sg NS Sg EW 1989 714 140051.4 63.69 145.46 SEY 355.75 8.9 0.010 0.065 0.040 1989 714 140051.4 63.69 145.46 SEY 355.75 8.1 0.015 0.061 0.038 1989104 20 56 47.6 64.70 146.83 SSY 52.27 8.7 0.127 0.244 0.613 1989104 20 56 47.6 64.70 146.83 ZYR 1 76.43 9.9 0.305 0.615 0.679 1989104 20 56 47.6 64.70 146.83 SUU 223.18 10.7 0.390 I .080 0.870 1989104 20 56 47.6 64.70 146.83 SEY 335.82 10.8 0.076 0.856 0.515 1989104 20 56 47.6 64.70 146.83 NKB 387.27 10.7 0.130 0.390 0.500 1989104 20 56 47.6 64.70 146.83 OMS 504.08 11.2 0.120 1.740 0.780 1989104 20 56 47.6 64.70 146.83 MGD 555.18 10.6 0.080 0.370 0.500 1990121 143711.8 63.10 151.95 SEY 28.63 8.8 0.540 1 .700 1.270 1990121 143711.8 63.10 151.95 DBI 104.43 8.9 0.050 0.370 0.270 1990121 143711.8 63.10 151.95 SUU 195.60 9.4 0.030 0.350 0.070 1990121 143711.8 63.10 151.95 OMS 204.98 8.7 0.030 0.100 0.120 1990121 143711.8 63.10 151.95 NKB 254.99 9.3 0.020 0.160 0.070 199012] 143711.8 63.10 151.95 KU- 268.33 8.8 0.030 0.060 0.040 1990121 143711.8 63.10 151.95 ATKR 357.32 8.7 0.010 0.051 0.048 1990121 143711.8 63.10 151.95 SSY 329.13 8.8 0.030 0.064 0.093 19903 5 12 41 40.7 60.62 141.41 NZD 243.15 7.5 0.006 0.022 0.025 19903 7 12 40 9.2 63.66 142.37 UNIS 109.04 7.4 0.003 0.034 0.038 19903 7 12 40 9.2 63.66 142.37 NZD 211.05 7.5 0.008 0.018 0.022 1990318 11 00 30.2 64.90 148.54 SSY 74.57 6.1 0.004 0.012 0.01 1 1990318 14 09 57.2 66.75 145.05 SSY 199.43 6.6 0.006 0.009 0.007 1990 318 20 55 6.4 67.87 140.91 TBK 188.77 7.8 0.014 0.067 0.034 1990 323 1603140 71.10 130.60 NAY 28.24 6.3 0.022 0.160 0.158 1990 329 20 47 29.8 64.02 145.04 UNIS 106.45 9.1 0.055 0.368 0.338 1990 329 20 47 29.8 64.02 145.04 ZYR 291.08 10.0 0.138 0.206 0.262 152 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW 1990 329 20 47 29.8 64.02 145.04 MOMR 285.11 9.2 0.020 0.120 0.120 1990 329 20 47 29.8 64.02 145.04 NKB 355.08 9.5 0.030 0.120 0.150 1990 329 20 47 29.8 64.02 145.04 NZD 343.84 9.6 0.080 0.191 0.146 1990 329 20 47 29.8 64.02 145.04 DBI 342.08 9.6 0.010 0.180 0.070 1990 329 20 47 29.8 64.02 145.04 MGD 532.04 10.2 0.020 0.150 0.170 I990 330 15 15 38.6 64.04 145.07 ATKR 15.90 7.4 0.427 1.724 2.235 1990 330 15 15 38.6 64.04 145.07 UNIS 106.39 8.7 0.025 0.220 0.200 1990 330 15 15 38.6 64.04 145.07 SSY 156.93 9.0 0.076 0.234 0.219 1990 330 15 15 38.6 64.04 145.07 SUU 207.65 8.6 0.040 0.130 0.070 1990 330 15 15 38.6 64.04 145.07 NZD 346.15 8.7 0.027 0.059 0.052 199041 1709180 64.03 144.98 ATKR 18.28 6.3 0.100 0.375 0.985 199041 17 0918.0 64.03 144.98 UNIS 103.44 6.9 0.004 0.018 0.015 19904] 1709180 64.03 144.98 SSY 160.47 7.7 0.014 0.052 0.053 199042 15 32 46.9 62.12 138.02 UNIS 376.08 9.9 0.017 0.261 0.323 199042 15 32 46.9 62.12 138.02 ATKR 424.26 10.5 0.034 0.604 0.275 199042 15 32 46.9 62.12 138.02 MOMR 544.30 10.8 0.017 0.126 0.143 199042 15 32 46.9 62.12 138.02 CGD 552.31 10.1 0.018 0.219 0.259 199042 15 32 46.9 62.12 138.02 SSY 559.80 10.4 0.015 0.284 0.183 199042 15 32 46.9 62.12 138.02 BTG 635.52 9.8 0.013 0.055 0.074 199042 15 32 46.9 62.12 138.02 DBI 659.29 10.5 0.050 0.130 0.030 199042 15 32 46.9 62.12 138.02 OMS 915.75 10.3 0.020 0.040 0.050 1990412 1910484 62.40 138.12 KHG 134.44 9.6 0.028 0.089 0.054 1990 412 1910484 62.40 138.12 UNIS 349.69 8.9 0.020 0.099 0.085 1990 412 1910484 62.40 138.12 ATKR 402.46 9.2 0.014 0.137 0.070 I990 412 1910484 62.40 138.12 CGD 576.45 9.3 0.006 0.072 0.044 1990 423 141513.7 67.52 132.27 SAY 159.38 8.9 0.059 0.282 0.209 153 Date Origin Time Lat. Long. Station Dist. (km) Pg EW PgZ SgNS Sg EW 1990 423 141513.7 67.52 132.27 TBK 1 80.79 8.3 0.011 0.047 0.089 0.063 1990 425 17 32 37.8 66.04 134.00 BTG 181.19 7.6 0.004 0.014 0.018 0.038 1990 425 17 32 37.8 66.04 134.00 TBK 200.06 7.8 0.007 0.027 0.033 0.039 199055 16 22 0.0 62.92 139.80 KHG 217.91 7.8 0.004 0.010 0.061 0.047 199055 16 22 0.0 62.92 139.80 UNIS 248.90 7.6 0.005 0.005 0.003 0.022 19905 5 16 22 0.0 62.92 139.80 ATKR 299.06 7.6 0.004 0.006 0.022 0.014 19905 7 1233183 67.63 142.55 MOMR 132.62 8.5 0.019 0.040 0.186 0.188 19905 7 12 33 18.3 67.63 142.55 TLI 292.70 8.0 0.013 0.013 0.039 0.139 19905 7 12 33 18.3 67.63 142.55 SAY 355.35 8.5 0.016 0.017 0.064 0.073 I990 520 11 44 22.7 67.45 143.59 MOMR 1 10.60 7.4 0.004 0.005 0.240 0.040 1990 530 11 56 45.7 62.91 144.88 ATKR 141.90 10.0 0.085 0.283 0.666 0.895 1990 530 11 56 45.7 62.91 144.88 SUU 166.57 10.4 0.590 0.390 1 .640 0.950 1990 530 11 56 45.7 62.91 144.88 UNIS 201.35 10.2 0.084 0.161 0.425 0.526 1990 530 11 56 45.7 62.91 144.88 NKB 269.01 10.0 0.130 0.060 0.350 0.350 1990 530 11 56 45.7 62.91 144.88 SSY 271 .99 9.8 0.040 0.065 0.318 0.447 1990 530 11 56 45.7 62.91 144.88 DBI 306.86 10.0 0.030 0.340 0.230 1990 530 11 56 45.7 62.91 144.88 SEY 379.69 10.3 0.008 0.060 0.460 0.360 1990 530 11 56 45.7 62.91 144.88 TTY 599.37 10.1 0.020 0.080 0.150 1990 530 14 06 4.0 62.90 144.92 ATKR 142.86 8.9 0.140 0.048 0.178 0.368 1990 530 14 06 4.0 62.90 144.92 SUU 164.49 9.2 0.040 0.340 0.200 1990 530 14 06 4.0 62.90 144.92 UNIS 203.17 8.6 0.015 0.020 0.004 0.124 I990 530 14 06 4.0 62.90 144.92 SSY 272.26 8.5 0.018 0.008 0.062 0.074 1990 530 14 06 4.0 62.90 144.92 SEY 377.75 9.1 0.020 0.020 0.090 0.070 199061 13 32 50.8 67.77 131.97 SAY 145.48 7.2 0.005 0.009 0.013 0.019 199063 20 20 6.6 66.34 140.92 MOMR 103.25 7.4 0.009 0.009 0.031 0.039 199063 20 20 6.6 66.34 140.92 UNIS 224.32 7.5 0.004 0.005 0.048 0.029 154 Date Origin Time Lat. Long. Station Dist. (km) Pg NS Pg EW PgZ Sg NS Sg EW SgZ 199063 20 20 6.6 66.34 140.92 TBK 233.40 7.9 0.008 0.011 0.016 0.039 0.034 0.043 199063 20 20 6.6 66.34 140.92 ATKR 310.02 7.5 0.008 0.004 0.006 0.014 0.017 0.014 199063 20 20 6.6 66.34 140.92 SSY 310.28 7.3 0.003 0.005 0.006 0.009 0.015 0.007 199066 13 57 49.6 65.41 135.11 TBK 244.98 10.1 0.054 0.054 0.125 0.416 0.459 0.447 199066 13 57 49.6 65.41 135.11 KHG 307.82 9.5 0.020 0.012 0.034 0.332 0.225 0.084 199066 13 57 49.6 65.41 135.11 SAY 367.12 10.1 0.021 0.015 0.016 0.127 0.244 0.109 199066 13 57 49.6 65.41 135.11 NZD 376.95 9.4 0.023 0.018 0.019 0.131 0.130 0.117 199066 13 57 49.6 65.41 135.11 UNIS 392.91 9.1 0.016 0.040 0.040 0.083 0.067 199066 13 57 49.6 65.41 135.11 MOMR 385.72 9.9 0.013 0.068 0.074 1990612 2044 51.0 63.90 144.90 UNIS 109.65 6.3 0.003 0.003 0.002 0.007 0.008 0.008 1990 625 1312482 66.88 130.45 BTG 198.84 8.2 0.016 0.018 0.024 0.068 0.061 0.057 1990 625 1312482 66.88 130.45 SAY 263.13 8.8 0.010 0.020 0.010 0.050 0.160 0.030 1990 625 1312482 66.88 130.45 TBK 271.63 8.8 0.010 0.010 0.020 0.070 0.060 0.050 1990 625 1312482 66.88 130.45 NAY 441.81 9.3 0.010 0.010 0.010 0.030 0.025 0.020 1991210 181632.0 62.94 145.58 SSY 257.28 11.2 0.594 0.859 0.869 1.878 1.582 1 .604 1991210 1816320 62.94 145.58 KU- 150.47 10.8 0.041 1.100 1 .240 1.700 1.270 2.250 1991210 181632.0 62.94 145.58 NKB 244.9] 10.7 0.380 0.520 0.270 1.120 0.230 0.480 1991210 1816320 62.94 145.58 DBI 272.63 11.4 0.240 0.430 0.520 2.260 0.570 1.150 1991210 1816320 62.94 145.58 NZD 336.03 11.3 0.310 0.670 0.352 1.637 1.335 1.271 1991210 1816320 62.94 145.58 SEY 344.1 1 1 0.9 0.140 0.420 0.029 0.890 0.320 0.210 1991210 181632.0 62.94 145.58 MOMR 408.04 11.3 0.167 0.197 0.295 1.780 1 .400 0.557 1991210 1816320 62.94 145.58 TL—S 408.03 11.3 0.360 0.360 0.270 4.990 6.400 3.630 1991210 1816320 62.94 145.58 MGD 422.1 1 11.9 0.300 0.350 0.630 0.860 3.480 0.390 1991210 1816320 62.94 145.58 KHG 510.28 11.5 0.120 0.085 0.149 1.067 1.073 0.947 1991210 1816320 62.94 145.58 OMS 521.26 11.2 0.080 0.120 0.140 0.590 0.180 0.470 1991210 181632.0 62.94 145.58 EVE 710.53 11.7 0.080 0.530 0.310 0.700 155 Date Origin Time Lat. Long. Station Dist. (km) PgZ Sg NS Sg EW SgZ 1991210 1816320 62.94 145.58 OMO 768.30 11.4 0.050 0.340 0.260 0.160 1991210 1816320 62.94 145.58 TBK 661 .92 12.8 0.196 0.730 0.842 1.118 199131 181414.0 60.02 152.79 106.58 10.0 0.400 0.540 0.790 0.330 199131 1814140 60.02 152.79 MGD 114.51 10.0 0.490 1.120 1.170 0.520 199131 [81414.0 60.02 152.79 MAG 122.43 9.7 0.040 0.570 0.720 0.430 199131 1814140 60.02 152.79 TL—S 125.43 10.1 0.050 0.720 0.250 0.140 199131 1814 14.0 60.02 152.79 DBI 280.17 9.2 0.030 0.110 0.140 0.070 199131 181414.0 60.02 152.79 356.58 9.3 0.010 0.120 0.180 0.140 199131 18 14 14.0 60.02 152.79 SUU 394.01 9.2 0.020 0.070 0.070 19913 7 12 28 43.0 63.34 140.03 NZD 105.88 8.3 0.048 0.111 0.126 0.098 19913 7 12 28 43.0 63.34 1 40.03 UNIS 207.33 8.7 0.017 0.155 0.159 0.110 199137 12 28 43.0 63.34 140.03 KHG 238.58 8.5 0.005 0.105 0.085 0.062 199137 16 20 43.0 61.28 157.00 EVE 137.91 11.4 0.190 4.700 2.290 4.320 199137 16 20 43.0 61.28 157.00 TTY 174.15 11.0 0.360 2.840 0.610 0.820 19913 7 16 20 43.0 61.28 157.00 TL-S 247.59 11.0 0.160 1.720 1.350 1 .240 19913 7 16 20 43.0 61.28 157.00 DBI 348.74 10.7 0.120 0.670 0.300 0.400 199137 16 20 43.0 61.28 157.00 MGD 368.1 1 I 0.9 0.080 0.860 0.630 0.400 19913 7 16 20 43.0 61.28 157.00 NKB 437.30 10.7 0.030 0.120 0.370 0.120 0.130 19913 7 16 20 43.0 61.28 157.00 OMO 473.73 11.3 0.090 0.960 0.330 199137 16 20 43.0 61.28 157.00 SUU 490.59 10.9 0.020 0.020 0.560 0.290 0.220 1991310 19 01 25.5 64.40 140.04 UNIS 153.87 8.2 0.006 0.007 0.165 0.065 0.091 1991310 1901255 64.40 1 40.04 NZD 217.23 7.8 0.005 0.005 0.066 0.070 0.056 1991316 110210.] 62.39 153.10 DBI 121.34 10.7 0.380 1.150 1 .440 0.950 0.780 1991316 110210.] 62.39 153.10 OMS 138.28 10.4 0.010 0.350 1.140 0.280 0.740 1991316 110210.] 62.39 153.10 TL-S 145.06 10.7 0.080 0.290 2.140 1 .640 2.000 1991316 110210.] 62.39 153.10 NKB 253.80 10.4 0.080 0.090 0.770 0.350 0.140 156 Date Origin Time Lat. Long. Station Dist. (km) PgZ Sg NS Sg EW 1991316 11 0210.1 62.39 153.10 SUU 257.24 10.0 0.070 0.420 0.180 1991316 110210.] 62.39 153.10 TTY 257.61 10.9 0.190 1.630 1.280 1991316 110210.] 62.39 153.10 MGD 289.95 10.7 0.060 1.120 0.990 1991316 110210.] 62.39 153.10 KU- 299.96 9.9 0.110 0.310 0.300 1991316 110210.] 62.39 153.10 EVE 322.67 10.3 0.140 0.410 0.380 1991317 17 42 3.9 64.24 146.19 ATKR 51.58 7.3 0.038 0.134 0.085 1991317 17 42 3.9 64.24 146.19 SSY 1 10.48 7.9 0.016 0.084 0.146 1991317 17 42 3.9 64.24 146.19 UNIS 1 46.90 8.1 0.009 0.091 0.050 1991 322 16 00 22.9 62.35 148.41 SUU 49.76 9.0 0.240 0.670 0.850 1991 322 16 00 22.9 62.35 148.41 NKB 1 14.70 9.7 0.180 0.720 0.670 1991 322 16 00 22.9 62.35 148.41 DBI 120.88 9.6 0.080 0.620 0.330 1991 322 16 00 22.9 62.35 148.41 SEY 213.13 9.5 0.060 0.290 0.100 1991 322 16 00 22.9 62.35 148.41 TL-S 249.63 10.0 0.030 0.180 0.520 1991 322 16 00 22.9 62.35 148.41 OMS 379.39 8.9 0.020 0.060 0.040 1991513 12 58 48.4 62.92 145.54 SUU 133.33 8.6 0.050 0.300 0.110 1991513 12 58 48.4 62.92 145.54 ATKR 141.69 8.5 0.105 0.167 0.142 1991513 12 58 48.4 62.92 145.54 UNIS 215.55 8.6 0.018 0.136 0.136 1991513 12 58 48.4 62.92 145.54 SSY 259.98 8.1 0.013 0.030 0.055 1991 522 1548 6.8 67.24 139.58 BTG 216.24 9.1 0.027 0.155 0.236 1991 522 15 48 6.8 67.24 139.58 SAY 268.57 9.3 0.023 0.235 0.297 1991 522 15 48 6.8 67.24 139.58 UNIS 340.40 9.3 0.024 0.140 0.136 1991 522 15 48 6.8 67.24 139.58 TLI 331.02 8.3 0.008 0.024 0.046 1991 522 15 48 6.8 67.24 139.58 SSY 408.07 9.0 0.009 0.062 0.090 1991 524 12 59 7.2 64.00 149.17 SSY 163.13 8.4 0.026 0.079 0.159 1991 524 12 59 7.2 64.00 149.17 ATKR 197.22 7.8 0.011 0.028 0.045 1991 524 12 59 7.2 64.00 149.17 UNIS 293.57 7.8 0.004 0.029 0.014 157 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ SgNS Sg EW 1991 624 20 04 19.2 65.03 145.84 SSY 59.59 7.2 0.022 0.055 0.113 0.069 I991 624 20 04 19.2 65.03 145.84 ATKR 100.34 7.8 0.003 0.004 0.043 0.081 1991 624 20 04 19.2 65.03 145.84 UNIS 134.07 8.2 0.006 0.015 0.118 0.075 1991624 20 04 19.2 65.03 145.84 MOMR 199.75 8.1 0.015 0.025 0.064 0.058 199172 13 43 48.7 65.18 139.84 UNIS 173.98 8.5 0.080 0.100 0.258 0.117 199172 13 43 48.7 65.18 139.84 MOMR 210.08 8.9 0.036 0.055 0.190 0.228 199172 13 43 48.7 65.18 139.84 ATKR 275.19 8.5 0.019 0.037 0.096 0.082 199172 13 43 48.7 65.18 139.84 NZD 300.91 9.0 0.027 0.039 0.102 0.101 199172 13 43 48.7 65.18 139.84 TBK 301.19 9.6 0.038 0.044 0.216 0.380 1991 722 1349198 62.20 143.54 NZD 233.69 8.5 0.005 0.015 0.073 0.059 1991 722 13 4919.8 62.20 143.54 ATKR 234.38 7.8 0.005 0.007 0.046 0.038 1991722 1349198 62.20 143.54 UNIS 263.66 7.8 0.003 0.009 0.021 0.036 199184 19 08 6.2 65.47 143.22 ATKR 169.61 10.2 0.409 0.655 1 .093 0.984 199184 19 08 6.2 65.47 143.22 SSY 182.41 10.5 0.169 0.519 1.457 1.800 199184 19 08 6.2 65.47 143.22 TBK 375.47 11.2 0.223 0.461 1.081 1.838 199184 19 08 6.2 65.47 143.22 NZD 387.92 11.0 0.307 0.226 0.420 1.222 199184 19 08 6.2 65.47 143.22 BTG 450.52 10.8 0.030 0.059 0.909 0.798 199184 19 08 6.2 65.47 143.22 SUU 382.90 10.9 0.022 0.020 0.866 0.260 199184 19 08 6.2 65.47 143.22 SEY 524.99 10.4 0.040 0.060 0.031 0.130 199184 19 08 6.2 65.47 143.22 OMS 693.39 10.3 0.020 0.110 0.090 199184 191440.5 65.48 143.25 UNIS 101.71 9.5 0.363 0.302 0.716 0.716 199184 1914405 65.48 143.25 MOMR 109.78 9.0 0.169 0.184 0.220 0.506 199184 1914405 65.48 143.25 ATKR 169.80 9.5 0.101 0.204 0.586 0.395 199184 1914405 65.48 143.25 SSY 181.23 9.5 0.054 0.215 0.416 0.503 199184 19 14 40.5 65.48 143.25 SUU 382.84 9.6 0.060 0.060 0.150 0.060 199184 191440.5 65.48 143.25 TBK 375.80 9.8 0.028 0.065 0.189 0.270 158 Date Origin Time Lat. Long. Station Dist. (km) PgZ Sg NS Sg EW 199184 191440.5 65.48 143.25 NZD 389.60 9.7 0.038 0.173 0.269 199184 1914405 65.48 143.25 NKB 537.27 10.1 0.020 0.160 0.060 199197 11 28 33.9 60.52 151.68 TL-S 78.00 8.3 0.050 0.150 0.130 199197 11 28 33.9 60.52 151.68 MGD 74.30 8.7 0.180 0.250 0.290 199197 11 28 33.9 60.52 151.68 NKB 1 79.83 8.7 0.020 0.180 0.110 199197 11 28 33.9 60.52 151.68 DBI 208.30 8.9 0.030 0.120 0.180 199197 20 53 39.8 59.96 153.16 TTY 88.42 9.9 0.240 0.470 1.140 1.100 199197 20 53 39.8 59.96 153.16 TL-S 136.83 9.2 0.060 0.110 0.230 0.260 199197 20 53 39.8 59.96 153.16 MGD 135.50 9.4 0.130 0.260 0.420 199197 20 53 39.8 59.96 153.16 DBI 294.52 8.7 0.020 0.070 0.060 1991115 10 16 38.6 59.01 150.60 MGD 115.53 10.5 0.270 4.100 5.000 1991115 10 16 38.6 59.01 150.60 NKB 277.10 9.5 0.050 0.160 0.090 1991115 10 16 38.6 59.01 150.60 TTY 265.00 11.3 0.240 1.840 2.940 1991115 10 16 38.6 59.0] 150.60 SUU 439.86 9.4 0.020 0.100 0.050 1991121 1713503 59.41 147.66 MGD 186.12 9.3 0.090 0.018 0.330 1991121 17 13 50.3 59.41 147.66 NKB 223.38 9.1 0.030 0.150 0.210 1992 828 14 27 5.1 58.94 149.22 TL-S 300.56 11.9 0.080 2.420 3.749 1992 828 14 27 5.1 58.94 149.22 TTY 337.90 11.9 0.470 2.810 1 .090 1992 828 14 27 5.1 58.94 149.22 DBI 387.22 12.3 0.290 4.050 2.380 1992 828 14 27 5.1 58.94 149.22 SUU 431.17 11.6 0.270 1 .090 1.220 1992 828 14 27 5.1 58.94 149.22 ATKR 621.61 11.7 0.080 0.500 0.240 1992 828 14 27 5.1 58.94 149.22 EVE 640.90 11.3 0.090 0.300 0.120 1992 828 14 27 5.1 58.94 149.22 MOMR 890.63 11.8 0.050 0.380 0.240 19921010 174751.4 62.49 154.05 SEY 98.34 10.3 0.150 0.200 1 .000 1 .000 19921010 17 47 51.4 62.49 154.05 DB] 1 70.76 10.9 0.100 0.120 3.777 1.880 19921010 174751.4 62.49 154.05 TL-S 1 74.65 10.3 0.140 0.130 1.050 1.030 0.660 159 Date Origin Time Lat. Long. Station Dist. (km) Pg NS PgZ Sg NS Sg EW 19921010 17 47 51.4 62.49 154.05 NKB 302.97 9.4 0.020 0.020 0.150 0.130 199312 14 35 42.4 60.70 1 50.45 MGD 74.32 8.0 0.100 0.100 0.130 199312 14 35 42.4 60.70 150.45 NKB 113.33 8.3 0.080 0.110 0.090 199312 14 35 42.4 60.70 1 50.45 TL-S 115.27 8.2 0.020 0.050 0.090 0.070 199312 14 35 42.4 60.70 I 50.45 DBI 183.03 8.6 0.040 0.050 0.100 0.130 1993311 1045 5.1 62.07 154.11 DBI 176.78 9.7 0.060 0.090 0.460 0.330 1993 618 1916143 62.05 146.22 SUU 128.36 10.4 0.240 0.460 0.560 0.560 1993 618 1916143 62.05 146.22 ATKR 243.24 10.7 0.416 0.552 0.748 1 .060 1993 618 191614.3 62.05 146.22 UNIS 317.25 10.8 0.190 0.070 0.720 0.760 1993 618 191614.3 62.05 146.22 SSY 348.37 10.6 0.388 0.390 0.363 0.538 1993 618 191614.3 62.05 146.22 NZD 373.8] 10.7 0.049 0.100 0.442 0.515 1993 618 1916143 62.05 146.22 OMS 496.60 10.5 0.070 0.040 0.210 0.250 1993 618 19 1614.3 62.05 146.22 MOMR 512.19 10.5 0.038 0.060 0.225 0.400 199442 16 55 59.8 61.79 153.72 OMS 133.78 9.1 0.090 0.230 0.150 0.120 199442 16 55 59.8 61.79 153.72 SEY 144.72 9.3 0.080 0.090 0.030 0.280 1994616 1753182 62.46 147.58 MGD 316.94 12.5 0.090 6.480 4.890 1997716 20 37 27.9 63.97 144.67 ATKR 32.50 7.7 0.122 0.108 0.478 0.703 1997716 20 37 27.9 63.97 144.67 UNIS 96.16 8.3 0.026 0.026 0.129 0.143 1997 716 20 37 27.9 63.97 144.67 NZD 325.25 8.5 0.015 0.044 0.049 1997 730 20 51 15.3 65.66 144.07 UNIS 127.95 9.5 0.057 0.051 0.641 0.479 1997 730 20 51 15.3 65.66 144.07 SSY 149.88 9.6 0.050 0.478 0.650 I997 730 20 51 15.3 65.66 144.07 ATKR 172.05 9.2 0.059 0.057 0.324 0.338 199917 1813420 67.63 141.62 UNIS 348.48 12.0 0.920 1 .660 4.720 4.680 199917 181342.0 67.63 141.62 ATKR 415.45 12.4 2.300 2.270 3.490 2.840 1999104 20 12 43.0 62.85 147.50 ATKR 188.91 10.5 0.310 0.360 1.310 1.220 1999104 20 12 43.0 62.85 147.50 SEY 247.58 11.0 0.240 1.500 1 .290 160‘ Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg 13w SgZ 1999104 20 12 43.0 62.85 147.50 UNIS 284.08 10.5 0.170 0.840 0.620 0.620 1999104 20 12 43.0 62.85 147.50 MGD 355.96 10.7 0.210 0.420 0.630 1999104 2012 43.0 62.85 147.50 OMS 423.78 10.7 0.140 0.430 0.340 1999124 11 32 44.5 67.47 129.29 BTG 227.37 10.5 0.475 1.308 1.084 1 .495 1999124 11 32 44.5 67.47 129.29 NAY 380.31 11.1 0.431 1.850 1.635 1.255 19991224 I] 25 25.4 61.49 138.46 ATKR 451.79 10.7 0.040 0.690 0.405 0.450 19991224 11 25 25.4 61.49 138.46 UNIS 418.05 10.2 0.060 0.380 0.250 0.340 19991 224 11 25 25.4 61.49 138.46 CGD 530.38 10.3 0.037 0.3 70 0.250 0.110 161 Explosions in the Magadan and Northern Yakutia Region Date Origin Time Lat. Long. Station Dist. (km) K PgNS Pg EW PgZ SgNS Sg EW SgZ 1985 330 05 59 57.0 63.40 147.00 SEY 275.11 8.6 0.020 0.020 0.080 0.030 0.060 198617 05 45 06.6 63.34 146.60 UNIS 213.82 7.8 0.006 0.011 0.007 0.023 0.034 0.027 1986110 02 30 38.7 64.70 142.05 UNIS 58.08 7.9 0.035 0.034 0.041 0.173 0.090 0.178 1986110 02 30 38.7 64.70 142.05 MOMR 203.73 9.1 0.044 0.021 0.063 0.087 0.149 0.063 1986110 02 30 38.7 64.70 142.05 TBK 401.85 8.7 0.006 0.009 0.032 0.038 0.053 1986110 05 09 56.0 63.14 146.40 UNIS 222.10 7.0 0.006 0.011 0.014 0.046 0.034 0.041 1986110 0546 1.5 65.56 1 50.83 MOMR 358.53 8.1 0.011 0.011 0.011 0.02] 0.021 1986110 0546 1.5 65.56 150.83 UNIS 373.07 8.4 0.006 0.011 0.014 0.023 0.017 0.021 1986 212 04 25 55.4 62.59 147.65 UNIS 310.10 7.2 0.004 0.007 0.006 0.01 1 0.011 0.013 1986 212 05 0621.3 62.56 148.16 UNIS 330.70 7.7 0.005 0.005 0.013 0.021 0.011 0.013 1986 212 07 24 08.1 63.77 144.53 UNIS 108.73 6.5 0.003 0.005 0.006 0.011 0.011 0.013 1986 214 07 17 49.0 70.36 133.74 NAY 123.70 7.8 0.039 0.015 0.052 0.051 0.075 0.064 1986 214 07 17 49.0 70.36 133.74 BTG 303.54 7.7 0.013 0.003 0.014 0.026 0.025 0.028 1986 214 07 17 49.0 70.36 133.74 TBK 332.88 7.8 0.006 0.009 0.011 0.026 0.018 1986 214 07 17 49.0 70.36 133.74 SAY I 86.73 8.0 0.007 0.028 0.036 0.059 0.037 1986216 02 04 22.0 65.20 144.63 UNIS 96.74 7.0 0.005 0.006 0.021 0.022 0.013 1986 216 02 04 22.0 65.20 144.63 MOMR 1 54.92 7.5 0.005 0.022 0.042 0.010 1986 216 02 48 33.5 64.68 144.05 UNIS 41.23 5.8 0.005 0.008 0.021 0.022 0.013 1986 222 07 29 38.8 69.43 140.17 TBK 257.62 7.4 0.015 0.018 0.020 0.022 1986 224 0632115 70.33 133.44 SAY 185.55 7.4 0.013 0.017 0.025 0.018 19863 5 06 13 25.4 64.24 143.12 UNIS 36.61 7.3 0.038 0.147 0.172 0.284 1986 321 05 26 07.8 63.36 148.68 UNIS 298.00 8.9 0.038 0.137 0.140 0.142 198645 06 57 23.2 71.00 135.00 YUB 49.35 7.6 0.021 0.075 0.063 0.086 198664 06 39 37.3 64.20 150.32 UNIS 343.37 8.6 0.020 0.040 0.026 0.080 162 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW SgZ 1986 620 23 48 23.5 70.77 140.26 YUB 152.65 8.1 0.040 0.050 0.057 0.050 198679 05 32 18.7 63.38 146.71 UNIS 215.13 8.3 0.024 0.073 0.060 0.085 198679 05 32 18.7 63.38 146.7] MOMR 380.72 7.8 0.010 0.006 0.010 0.010 1986719 01 1608.4 63.45 147.00 UNIS 221.83 7.4 0.003 0.020 0.010 0.024 1986 729 05 33 01.6 62.35 130.07 YAK 42.48 8.6 0.187 0.878 0.692 0.223 198693 23 23 14.0 66.60 143.43 MOMR 17.60 7.0 0.200 0.450 0.870 0.550 19861212 05 42 26.5 63.35 147.50 UNIS 248.60 7.8 0.012 0.025 0.014 19861 223 03 35 49.0 65.06 143.84 UNIS 62.15 6.6 0.048 0.044 0.035 1987 129 05 58 00.0 63.23 148.14 SUU 49.98 7.5 0.054 0.214 0.196 0.215 198723 04 3451.4 62.86 145.27 SUU 146.55 7.8 0.009 0.036 0.036 0.027 198723 0434 51.4 62.86 145.27 NKB 250.27 7.8 0.007 0.015 0.030 0.007 198723 0615180 63.06 148.46 SUU 34.85 6.9 0.036 0.107 0.071 0.090 198723 061518.0 63.06 148.46 SNE 151.30 6.9 0.007 0.017 0.012 0.007 198723 0615180 63.06 148.46 NKB 192.63 7.1 0.007 0.007 0.015 0.007 1987219 07 49 23.7 63.21 148.15 SUU 47.78 8.0 0.108 0.160 0.231 0.152 1987219 07 49 23.7 63.21 148.15 SNE 174.11 7.1 0.007 0.012 0.018 0.015 1987 219 07 49 23.7 63.21 148.15 DBI 164.04 7.7 0.015 0.022 0.022 0.015 1987219 07 49 23.7 63.21 148.15 NKB 211.23 8.8 0.022 0.015 0.030 0.022 1987219 0443 51.2 62.64 148.12 SUU 15.63 4.8 0.009 0.027 0.044 0.027 1987219 0443 51.2 62.64 148.12 DBI 139.27 7.1 0.007 0.022 0.007 0.007 1987219 0443 51.2 62.64 148.12 NKB 149.44 7.2 0.007 0.015 0.022 0.015 1987 219 05 12 37.0 64.32 144.55 SUU 247.18 8.4 0.027 0.027 0.036 0.027 1987219 05 12 37.0 64.32 144.55 DBI 379.81 8.3 0.015 0.015 0.015 0.015 1987 220 05 02 62.64 148.92 UNIS 353.58 8.7 0.027 0.039 0.022 1987 224 04 00 55.6 63.76 147.27 UNIS 215.46 7.8 0.007 0.045 0.018 19873 3 02 34 56.5 64.12 143.25 UNIS 49.59 7.7 0.012 0.226 0.261 163 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW 198734 03 52 58.6 64.55 142.02 UNIS 57.76 6.9 0.024 0.128 0.110 19873 5 04 34 30.9 64.76 143.79 UNIS 34.37 5.3 0.004 0.020 0.005 19873 5 06 37 13.3 64.25 144.26 UNIS 60.79 7.4 0.024 0.157 0.151 19873 5 06 37 13.3 64.25 144.26 NZD 324.32 7.6 0.006 0.018 0.014 19873 5 06 54 22.8 66.37 136.44 TBK 130.08 8.1 0.007 0.021 0.101 198736 07 12 23.4 70.32 134.00 YUB 90.73 7.9 0.026 0.040 0.064 198736 07 12 23.4 70.32 134.00 NAY 134.40 8.0 0.033 0.030 0.038 19873 6 09 01 47.7 64.42 144.68 UNIS 71.44 7.5 0.012 0.098 0.044 1987310 04 20 00.0 62.00 147.00 UNIS 342.04 7.9 0.012 0.020 0.010 1987 310 04 42 00.0 62.00 147.00 UNIS 342.04 8.1 0.005 0.020 0.016 1987316 0818110 66.51 136.27 TBK 115.00 7.7 0.018 0.035 0.070 1987316 0818110 66.51 136.27 BTG 145.47 7.1 0.015 0.017 0.028 1987317 03 33 38.5 64.49 144.54 UNIS 63.36 7.8 0.012 0.120 0.130 1987317 03 33 38.5 64.49 144.54 SUU 260.61 8.5 0.018 0.027 0.036 0.036 1987317 03 33 38.5 64.49 144.54 NKB 411.94 8.4 0.007 0.015 0.015 0.015 1987317 03 33 38.5 64.49 144.54 DBI 390.73 8.3 0.007 0.007 0.022 0.015 1987317 03 33 38.5 64.49 144.54 SNE 400.94 8.2 0.007 0.007 0.014 0.014 1987317 03 59 27.0 63.12 147.57 SUU 47.78 8.0 0.036 0.090 0.178 0.187 1987317 03 59 27.0 63.12 147.57 DBI 183.94 7.9 0.015 0.022 0.037 0.022 1987317 03 59 27.0 63.12 147.57 SNE 189.87 7.7 0.014 0.014 0.020 0.034 1987317 03 59 27.0 63.12 147.57 NKB 208.57 8.4 0.015 0.022 0.030 0.067 1987317 04 12 06.4 62.75 147.80 SUU 18.10 6.4 0.044 0.036 0.116 0.133 1987317 04 12 06.4 62.75 147.80 DBI 158.10 7.4 0.007 0.015 0.015 0.015 1987317 04 12 06.4 62.75 147.80 SNE 158.45 7.3 0.007 0.007 0.020 0.020 1987317 04 12 06.4 62.75 147.80 NKB 165.85 7.5 0.007 0.015 0.015 0.022 1987317 05 55 34.2 70.24 133.16 NAY 112.63 7.8 0.024 0.055 0.045 lmm. 164 Date Origin Time Lat. Long. Station Dist. (km) PgZ Sg NS Sg EW 1987 321 03 19 27.8 64.77 143.81 UNIS 35.86 7.2 0.049 0.147 0.191 1987 321 03 19 27.8 64.77 143.81 MOMR 190.71 7.0 0.006 0.018 0.006 1987 321 05 40 49.6 70.35 134.31 NAY 143.37 8.1 0.020 0.019 0.082 1987 321 05 40 49.6 70.35 134.31 YUB 79.17 7.9 0.033 0.076 0.095 I987 321 07 32 52.9 64.32 144.40 UNIS 62.55 7.4 0.012 0.158 0.121 1987 321 07 32 52.9 64.32 144.40 MOMR 245.01 7.8 0.010 0.037 0.009 1987 324 03 34 14.5 64.48 143.57 UNIS 18.92 5.7 0.061 0.147 0.141 1987 324 06 32 39.3 70.89 134.53 YUB 59.65 7.0 0.027 0.054 0.023 I987 325 04 30 15.2 70.39 140.73 TL] 23.08 7.9 0.027 1.137 0.720 1987 325 05 0144.1 65.88 149.65 SUU 352.29 8.2 0.009 0.018 0.018 1987 325 05 0144.] 65.88 149.65 SEY 353.05 8.0 0.010 0.015 0.015 1987 325 05 0144.] 65.88 1 49.65 SNE 424.14 8.3 0.007 0.014 0.020 1987 328 08 43 33.6 69.17 138.62 TBK 200.81 8.1 0.023 0.028 0.040 198741 01 36 00.0 63.28 148.12 SEY 217.86 7.7 0.010 0.020 0.015 198744 01 31 04.4 64.97 143.56 UNIS 47.64 7.5 0.024 0.108 0.141 198744 04 09 00.0 62.97 147.94 UNIS 291.79 7.7 0.010 0.020 0.014 198744 04 09 00.0 62.97 147.94 SEY 224.70 8.0 0.010 0.035 0.020 198746 05 04 45.1 63.47 146.85 UNIS 214.50 7.9 0.007 0.043 0.014 198746 05 05 41.3 69.92 132.95 YUB 149.02 8.0 0.017 0.065 0.038 198749 08 25 25.7 70.50 134.45 NAY 142.24 7.7 0.016 0.028 0.028 198749 08 25 25.7 70.50 134.45 YUB 66.42 7.7 0.078 0.120 0.070 1987 421 231221.7 69.72 133.11 SAY 125.19 7.6 0.007 0.036 0.034 1987 421 231221.7 69.72 133.11 YUB 159.71 8.4 0.065 0.056 0.102 1987 421 231221.7 69.72 133.11 NAY 154.12 7.8 0.014 0.025 0.023 1987 423 05 40 05.3 64.27 142.41 NZD 258.39 8.6 0.030 0.069 0.061 1987 423 05 40 05.3 64.27 142.41 UNIS 51.23 7.6 0.061 0.246 0.948 165 Date Origin Time Lat. Long. Station Dist. (km) PgZ Sg NS Sg EW 1987 423 05 40 05.3 64.27 142.41 MOMR 247.22 8.1 0.010 0.059 0.022 1987 423 05 40 05.3 64.27 142.41 SUU 329.17 8.4 0.018 0.027 0.027 1987 423 05 40 05.3 64.27 142.41 DBI 468.48 8.4 0.007 0.015 0.015 1987 423 05 40 05.3 64.27 142.41 NKB 460.43 8.4 0.007 0.015 0.015 1987 423 05 40 05.3 64.27 142.41 SNE 473.66 8.5 0.007 0.014 0.014 1987 426 02 27 28.0 64.31 144.54 SUU 246.80 10.2 0.125 0.605 0.302 1987 426 02 27 28.0 64.31 144.54 SNE 388.63 8.6 0.020 0.020 0.027 1987 426 02 27 28.0 64.31 144.54 NKB 395.40 8.0 0.015 0.015 0.022 1987 427 06 32 59.7 67.73 138.16 TBK 72.52 7.5 0.015 0.079 0.110 1987 427 06 32 59.7 67.73 138.16 BTG 149.53 7.7 0.035 0.038 0.055 1987 428 04 24 00.2 64.74 144.05 UNIS 43.70 6.7 0.012 0.069 0.081 1987 428 04 26 13.4 63.49 146.03 UNIS 181.53 6.5 0.004 0.015 0.008 1987 429 230315.] 64.70 143.74 UNIS 28.61 6.5 0.024 0.078 0.091 1987 429 230315.] 64.70 143.74 MOMR 198.01 7.1 0.010 0.025 0.011 1987 430 0139312 64.29 144.62 UNIS 73.57 8.6 0.005 0.216 0.341 I987 430 013931.2 64.29 144.62 NZD 341.23 7.9 0.013 0.028 0.021 1987 430 0139312 64.29 144.62 MOMR 250.72 7.8 0.014 0.087 0.014 1987 430 0139312 64.29 144.62 SUU 242.44 7.8 0.009 0.018 0.018 1987 430 01 39 31.2 64.29 144.62 NKB 391.37 8.1 0.007 0.015 0.015 I987 430 021318.8 69.23 132.84 NAY 197.15 8.1 0.020 0.019 0.047 1987 430 0213188 69.23 132.84 YUB 208.78 9.1 0.065 0.126 0.130 1987 430 0213188 69.23 132.84 TL] 324.04 7.7 0.011 0.032 0.031 1987 430 07 59 03.2 63.33 146.75 UNIS 220.21 7.7 0.007 0.031 0.020 1987 430 07 59 03.2 63.33 146.75 MOMR 386.61 7.4 0.008 0.009 0.006 1987515 07 25 40.0 63.36 147.25 UNIS 237.79 8.1 0.012 0.040 0.020 1987 521 05 0851.5 63.25 146.44 UNIS 214.74 7.7 0.006 0.025 0.024 166 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW SgZ 1987 521 0508 51.5 63.25 146.44 NZD 383.45 8.5 0.011 0.028 0.021 0.043 1987 523 00 26 04.0 65.90 150.11 ZYR 26.65 8.9 0.010 2.410 1.931 2.275 1987 523 01 3120.9 62.10 135.38 NZD 195.26 8.3 0.021 0.055 0.043 0.028 1987 524 02 54 37.6 64.95 143 .46 UNIS 44.13 6.8 0.003 0.065 0.052 0.095 1987 524 02 54 37.6 64.95 143.46 MOMR 169.10 7.0 0.010 0.018 0.008 0.007 1987 526 05 05 03.8 63.42 147.49 UNIS 243.81 7.9 0.008 0.022 0.033 0.040 1987 526 21 20 00.7 67.76 140.10 TBK 153.32 8.5 0.035 0.089 0.090 0.077 1987 526 21 20 00.7 67.76 140.10 BTG 231.32 7.7 0.008 0.025 0.030 0.020 198763 05 2641.2 63.30 146.45 UNIS 211.25 7.7 0.007 0.028 0.013 0.029 198764 085116.] 63.38 146.74 UNIS 216.28 7.8 0.010 0.036 0.019 0.021 198765 06 39 09.6 63.21 146.71 UNIS 227.59 7.7 0.012 0.026 0.017 0.022 198781 03 59 47.6 63.26 146.94 UNIS 232.50 8.5 0.021 0.050 0.062 0.059 198781 03 59 47.6 63.26 146.94 ZYR 304.25 8.7 0.026 0.064 0.118 0.066 1987 81 03 59 47.6 63.26 146.94 MOMR 397.61 8.] 0.018 0.034 0.020 0.032 1987 811 0138 . 63.30 147.10 UNIS 235.87 10.0 0.012 0.060 0.042 0.048 1987 811 01 38 63.30 147.10 MOMR 396.99 8.2 0.008 0.019 0.016 0.018 1987817 00 55 09.3 69.34 139.29 TL] 1 10.02 7.8 0.019 0.064 0.045 0.028 1987917 00 32 42.2 65.94 150.03 ZYR 28.29 8.6 0.368 1.538 2.200 2.500 1987917 00 32 42.2 65.94 150.03 MOMR 311.24 6.8 0.007 0.007 0.008 0.002 1987918 05 21 55.2 63.21 146.80 UNIS 230.90 7.6 0.005 0.020 0.016 0.024 1987102 0551189 63.25 146.56 UNIS 219.07 8.0 0.012 0.052 0.031 0.050 19871028 04 25 04.1 63.27 146.67 UNIS 221.59 8.5 0.018 0.090 0.047 0.096 19871031 08 25 20.2 62.52 1 29.88 CGD 421.33 9.8 0.024 0.077 0.153 0.047 1987115 02 32 24.9 62.13 135.77 KHG 58.88 7.0 0.023 0.046 0.078 0.088 1987116 03 35 54.8 63.76 147.42 UNIS 222.09 7.4 0.005 0.018 0.013 0.017 1987116 22 09 08.2 63.08 147.50 UNIS 266.90 7.8 0.010 0.040 0.021 0.044 167 Date Origin Time Lat. Long. Station Dist. (km) Pg 13w PgZ SgNS Sg EW SgZ 19871119 00 07 43.0 63.40 146.10 UNIS 190.93 8.0 0.023 0.013 0.040 0.042 0.060 19871120 05 02 25.0 69.34 138.38 BTG 242.40 7.8 0.005 0.008 0.025 0.021 0.014 19871120 05 02 25.0 69.34 138.38 SAY 171.93 8.8 0.021 0.048 0.047 0.047 19871121 02 36 27.4 63.20 146.60 MOMR 396.97 8.1 0.007 0.012 0.028 0.025 0.019 19871123 23 29 06.3 62.02 156.26 SUU 426.23 9.1 0.009 0.009 0.062 0.044 0.027 19871210 05 24 18.0 69.13 138.82 TL] 139.62 8.2 0.025 0.034 0.056 0.071 0.050 19871210 05 24 18.0 69.13 138.82 SAY 181.29 8.0 0.017 0.012 0.027 0.034 0.027 19871210 05 24 18.0 69.13 138.82 TBK 200.57 8.7 0.037 0.030 0.053 0.110 0.040 198819 06 00 33.6 63.67 146.20 UNIS 175.38 7.3 0.007 0.006 0.015 0.010 0.024 1988215 02 28 28.7 70.95 134.19 YUB 73.43 8.0 0.033 0.166 0.133 0.332 1988311 04 13 34.4 62.71 148.06 SUU 8.94 5.3 0.089 0.106 0.196 0.107 0.176 1988311 04 13 34.4 62.71 148.06 NKB 157.76 7.5 0.010 0.010 0.019 0.024 0.015 1988311 04 13 34.4 62.71 148.06 DBI 144.15 7.6 0.007 0.007 0.037 0.022 0.030 1988311 04 13 34.4 62.71 148.06 MYA 254.60 7.3 0.008 0.008 0.008 0.016 0.008 1988311 05 28 05.8 63.68 147.46 SUU 105.84 9.3 0.054 0.088 0.267 0.304 0.229 1988311 05 28 05.8 63.68 147.46 NKB 269.78 8.6 0.015 0.019 0.058 0.068 0.058 1988311 05 28 05.8 63.68 147.46 DBI 223.26 8.7 0.022 0.030 0.105 0.052 0.075 1988311 05 28 05.8 63.68 147.46 MYA 346.17 8.4 0.008 0.008 0.033 0.033 0.025 1988311 05 45 50.2 62.95 149.33 SUU 62.81 7.5 0.018 0.018 0.080 0.063 0.062 1988311 05 45 50.2 62.95 149.33 DBI 99.49 7.8 0.007 0.007 0.067 0.045 0.045 1988311 05 45 50.2 62.95 149.33 MYA 222.99 8.1 0.025 0.025 0.028 0.033 0.033 1988 424 06 47 42.8 63.87 143.00 UNIS 78.21 7.7 0.054 0.071 0.142 0.100 1988 424 06 47 42.8 63.87 143.00 SUU 284.17 8.0 0.009 0.009 0.027 0.018 0.018 1988 429 07 0641.8 63.50 147.34 SEY 260.41 7.9 0.005 0.010 0.025 0.015 0.020 1988518 03 25 22.3 63.27 146.70 UNIS 222.71 7.6 0.006 0.006 0.030 0.015 0.029 1988 518 03 25 22.3 63.27 146.70 SEY 288.31 8.1 0.010 0.010 0.035 0.015 0.020 168 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW SgZ 1988 520 01 28 56.0 69.14 138.72 TLI 140.82 7.7 0.015 0.038 0.023 0.014 1988 521 0437 1.1 63.30 146.64 UNIS 218.25 7.8 0.012 0.030 0.016 0.024 1988 521 0437 1.1 63.30 146.64 SEY 291.60 7.7 0.005 0.020 0.010 0.015 1988 521 0437 1.1 63.30 146.64 SUU 95.56 7.3 0.009 0.027 0.027 0.026 1988 526 03 28 13.7 63.19 146.58 UNIS 224.42 7.3 0.006 0.010 0.010 0.012 1988 526 03 28 13.7 63.19 146.58 NZD 389.39 7.4 0.006 0.028 0.021 0.025 I988 621 0141 7.1 63.34 146.71 ATKR 121.48 7.4 0.021 0.026 0.028 0.025 1988 621 0141 7.1 63.34 146.71 UNIS 217.98 8.1 0.009 0.050 0.03 1 0.038 1988 621 0141 7.1 63.34 146.71 SEY 288.58 7.7 0.009 0.025 0.015 0.020 1988 623 02 42 6.9 63.15 146.58 ATKR 135.05 8.9 0.141 0.252 0.151 0.161 1988 623 02 42 6.9 63.15 146.58 UNIS 227.56 8.9 0.037 0.125 0.065 0.200 1988 623 02 42 6.9 63.15 146.58 SEY 293.50 8.6 0.025 0.070 0.070 0.065 1988717 23 08 0.4 63.43 145.47 ULZS 222.41 8.8 0.015 0.200 0.220 0.064 1988717 23 08 0.4 63.43 145.47 ULlS 242.90 8.0 0.014 0.053 0.039 0.035 198888 02 37 48.3 64.23 150.03 ZYR 165.98 8.6 0.055 0.080 0.085 0.032 198888 02 37 48.3 64.23 150.03 SEY 185.33 8.1 0.010 0.050 0.050 0.045 1988 920 07 3921.5 63.19 146.57 SSY 220.33 9.] 0.043 0.085 0.174 0.122 1988 920 07 39 21.5 63.19 146.57 UNIS 224.06 9.0 0.050 0.142 0.098 0.128 1988 920 07 39 21.5 63.19 146.57 SEY 294.20 8.7 0.015 0.076 0.030 0.045 1988 924 06 39 26.4 64.22 149.11 SSY 142.35 7.8 0.022 0.033 0.023 0.053 19881025 04 23 2.6 63.82 147.52 SSY 150.41 8.1 0.044 0.056 0.052 0.086 19881029 01 12 55.6 63.68 147.52 ATKR 129.28 7.5 0.012 0.013 0.028 0.029 1988112 02 58 14.4 63.62 147.48 ATKR 130.69 7.5 0.013 0.023 0.034 0.028 1988112 02 58 14.4 63.62 147.48 SSY 172.24 7.6 0.024 0.014 0.032 0.049 1988112 02 58 14.4 63.62 147.48 SEY 256.76 8.0 0.015 0.023 0.023 0.023 1988113 061617.6 63.67 147.20 SSY 165.69 7.2 0.019 0.010 0.022 0.027 169 Date Origin Time Lat. Long. Station Dist. (km) PgZ SgNS Sg EW SgZ 19881114 04 01 37.2 70.14 133.10 SAY 168.66 7.8 0.020 0.020 0.040 0.039 19881119 04 32 40.2 60.03 137.73 NZD 283.51 8.5 0.016 0.020 0.037 0.031 19881124 02 38 42.0 63.49 147.46 SEY 254.35 8.0 0.008 0.030 0.023 0.023 19881126 07 02 27.4 63.09 148.17 SEY 213.30 8.0 0.010 0.035 0.030 0.030 19881129 07 03 9.8 63.08 147.02 ATKR 153.88 7.6 0.005 0.038 0.016 0.013 1988122 02 48 18.7 60.42 137.62 NZD 243.40 7.8 0.005 0.017 0.022 0.031 1988127 04 01 6.9 63.60 147.21 SSY 1 73.48 7.3 0.010 0.009 0.017 0.044 198812 7 05 28 39.0 64.34 144.36 SSY 157.74 7.2 0.011 0.015 0.014 0.021 19881210 02 44 54.3 63.68 147.54 SSY 165.97 8.3 0.026 0.022 0.083 0.049 19881230 03 19 56.7 63.22 147.04 SEY 270.88 8.6 0.029 0.059 0.044 0.044 199348 04 06 55.1 66.31 136.42 BTG 168.27 8.2 0.028 0.084 0.100 0.085 199348 04 06 55.1 66.31 136.42 TBK 136.79 8.2 0.045 0.099 0.091 0.100 199612 5 06 54 17.0 63.22 147.08 ATKR 143.61 7.9 0.024 0.044 0.060 1997121 04 29 25.4 63.17 146.85 BTG 751.79 8.4 0.004 0.140 0.140 0.080 APPENDIX B Graphs for Individual Station 170 TUG 2.2 *1 usz 2.2 , g 1.8 . 0 ° 1.8 1 o O 1 I O 2 1'4 I . .‘ 1 g 1.4 ‘ o .0 o : O o O I 5 1.0 < ... . O .3 1.0 m 00 1 an o o: . \ 0.6 «O .r g m .. 00 0° A w . . \ 0.6 ‘ . .. . 5 0.24 "fir-0 ' E 021 0': .3" . 35’ -o.2 '44 s 5'." _0'2 *‘ ' °" " I 5 78910111213 5678910111213 K'Ch“ K-Chss 0 38 Earthquakes 0 41 Explosions 0 81 Earthquakes 0 52 Explosions UURS 2.2 CLNS 2.2 :5 L4 * . .° 2; 1J4: 2 0 V 1.0 « ° V 1.0 o no . an 0’ a ’0 tn 0 o 1’ 0.6 ..o‘é'” : 0‘? '..?‘o’o . A * ’0 0 o '5 0.2 4 fi 0 5 4 o. 0 ° 3 ° 0 fl 0 no} 3': . - 0&3?.1 15'? .02 .’ 4? , .5678910111213 5678910111213 K-Class K-Class 0 36 Earthquakes 0 28 Explosions 0 45 Earthquakes 0 40 Explosions CG 2.2 . 1.8 « 1.4 « O. 1.0 ‘ . I O 0.6 ~ 0 0.2 « ‘: $93!."- 3‘ IIJ-o.2 5678910111213 K-Class 0 32 Earthquakes 0 41 Explosions Figure Bl. Pg(h)/Sg(h) DCP ratio for stations in the Southern Yakutia region. 171 Pew/SB (1|)DCP U 2.2 . o USZ 2.2 . O 1.8 v0 m 1,s« .. . 1.4 -~ . o 8 1.4 1 O ’.‘ ”0 . ‘ o o 3‘ 1.04 o 3... o a; 1.0f . 0.. .... \ 1 0 ~09 0'6? ' ”‘3‘." 1: 0'6 ~ .103 '3'. o ' V . o -0.2 T4L 9 “0.2 I I 5678910111213 56789101112” K'Cm K‘Chss 038EanhquesO41Eprsbm '81W605252‘Pb8bm 2.2 CLNS 2.2 1.84 O O. m 1.8- : . 1.4a . o g 1.4‘ : o. 1.0 4‘ o ' f; 1.01 ‘..... o O 0.6« ‘fi'l' 2 0.6I ”I .. I J a 5 . o o.O O0.24 .‘;“a‘ 1 0‘. . °g: 0 o0.2 .0. . ...: t. 0 : -o.2 . * -o.2 - .° ’L—v— 5678910111213 5678910111213 K-Chas K-Chss O4S&nhquesO4OEprsbm o365arthques¢28fipbsbns CGD 2.2 1.84 O- . O 8 1.4f .. o 12 1.04 o '. ’0, {I 06; ’“O’ A ' . O a ' {t- a. 0.2.I ~ .‘. .‘ . I O A ° .i i" .0.2 . . . s 6 7 8 9 10 11 12 13 K-Class . 32 Wilkes . 41Eprs'nm Figure 32. Pg(z)/Sg(z) DCP ratio for stations in the Southern Yakutia region. 172 Pg (2) / 83 (z) DCP § Pg (2) / 83 (z) DCP é 3.0 USZ O 2.6 . . a. 2.2 1 a. U o a 1.8 * o . B N 73 V 1.4 . g V N on E 1.01 3.: ’o , '2 5 0.6‘ "x‘... E a 0.2 1 ,‘ . . 5'.“ -0.24.1v . . 5678910111213 5678910111213 K-Chss K-Chl O38Earthquakcs 041Eprs'nm OSIBRMMOSZW UURS 3.0 ; CLNS 3.0 ‘ 2.6 A . . 2.6 : a. 2.2 3 a. 2.2: 8 1.8 ‘ 8 1.8 ‘ s: 1 . s: 1 ° ° :3 1.4 ..o 0a... . I; 1'4. 0 W 10 ~ m 10 . '31" 2 ' :&.oa ; I '. o o 5 0.6 « ° 5 0.6‘ ’ f an 1 . .0 o 0‘ 0 °° “.0: ’00 D- 0.2 . 3- 0.2 ‘ 0 ' 0.0. o O o O.0 .0.’ 4. -02 - 1 -02 4 41*.— 5678910111213 5678910111213 K-Chss K-Chss O 45 Eanl'qucs O 40 Explosions O 36 Fanhmnkes O 28 Eprs'nm CGD 3.0 v 2.6 I o O o g 2.2 < . 1.8 ‘ a j 5 ° ’ v 1.4 '.. an O E 1.0 I 0 o.: E 0.6; . . "3 =1“ 0.2 « ”i"‘5 I 'o o -0.2 v 5 6 7 8 9 10 11 12 13 K-Chss O 32 Earthquakes O 41 Eprs'nns Figure B3. Pg(h)ng(z) DCP ratio for stations in the Southern Yakutia region. 173 § 2.2 USZ 2.2 1.8 +1 . 1.8 * o o 0 1.4 ~ 1.4 ‘ . 9. 1.0 « 0.6 * O .1 0’ 0.2 ~0.2 5 6 7 8 9 10 l] 12 13 10 1] 12 13 K-Chss K-Chss I 38 Eanlnmkes 0 41Epra'nns o 81 Earthquakes 0 52 Eprhm 2.2 4 0 2.2 1.8 . 1.8 1.4 « ° .. 1.4 i 1.0 . : 1.0 l 06 . :30 °. ' s’v'! ’.. 0.6 0.21 ‘.. ... 0.2 ‘ _02 o to -0.2 5 6 7 8 9 10 11 12 13 K-Chss I45Earthquea O40Explosions 036W“ 0288mm CGD 2.2 1.8 * 1.4 4 1.0 0.6 I 0... 0.2 I r... :3... f o -0.2 56789 10 11 12 13 K-Chss O 32 Earthmkes O 41 Eprs'nm Figure B4. Pg(z)/Sg(h) DCP ratio for stations in the Southern Yakutia region. 174 Pg (2) / sg (h) DCP § Pg (z)/Sg (11) DCP § Ps (z)/ 83 (h) DCP 0 Pg (2) / 83 (h) DCP Pg (2) / Sg (h) DCP 3. 2.2 TUG USZ 2.2 o 4 ‘ 1.8 « I 1.8I o o. 1.4 J ’0 0 0 I P- 1.4 4 0 ° . ‘ O I 8 I a 1.0: 1.0I . 00' .. 0 I I ’° 0 I 0.6 . °°6 , '38-.‘5 I E 02: 0.2« "9 u 1 “‘ ' ”'4‘. ' . I -0.2 -0.2 - . I 5678910111213 5678910111213 K-Class K-Chns O38Ea111'que804lEprsbm ”IWWOSZBPW UURS 2.2 1 CLNS 2.2 1.8« 0 i 1.84 1.4« :’ . g 1.4: . 1.01 0’ Oo ‘. : .. g 1.01 . ‘ . 0-6 0. o ’ . > 0.61 O. 1 “A“: g ‘ .0 .‘ 0.0" ‘ . O o 9 o o 0.2 O 0 lil- 02‘ 0 Q .0” Q o f i. o .0 o. w o ' -0-2 " . , . .02 3 .A . . 9 . 5678910111213 5678910111213 K-Class K-Chss O4SEmhq1-kes 0401:.wa 0365:11th 028Eprs'ms CGD 2.2 1.8 a- 1.4« . 8 .o .. 1.0« o g . .0 o > 0.6‘ ' := .2: ‘3‘?»- . ' . o . U .5. -0.2 - T 5 6 7 8 9 10 11 12 13 K-Chss . 32 Eanhques . 41 Explosions Figure BS. Full vector DCP ratio for stations in the Southern Yakutia region. 175 Full Vector DCP Full Vector DCP 1.8 SUUS 1.8 1,4 ~ 3. 1.4 1 . o 8 ‘ 3. - A 1.0 ° 1.0 o. o. . 5 .. 0.6 .0 “O '2‘'.°. .0. . 25? 0-6 « '... . 0. 0'. o' 5 02 ° "9 o" 0.2 - 0 4:3"? :9.” - . . 0..u':. -0.2 -0.2 5678910111213 5678910111213 K-Chss K-Chss O 46 Fanhquakes 0 33 Explosiors O 18 Earthquakes O 19 Eprs'nm 2.2 DBI 1.8 ‘3 ‘ L 1.4 1.4 < 0 ° 9. 1.0 1.0< . f; . o ' 00. U) 0.6 ‘ . .. O. 0'6 ‘ o! '0 o >- 0. Q. 5 02 . O 0.2 ... .. 5'.“ . $9 on -0.2 -0.2 T 5678910111213 5678910111213 K-Chss K-Class 0 I4 Earthquakes 012 Explosions 014Ean1nmkes 010Eprsiom SEY 2.2 1.8 E: o 1.4 <5 1.0 < 31° ; 0.6 x: 5 o .1 o °° 0.2 - a- ‘ ' ... .... -0.2 56789 10 11 12 13 K-Chss 0 26 Earthquakes 0 14 Fxplosiom Figure B6. Pg(h)/Sg(h) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 176 z 7: 2 Pg (h) / Sg (h) DCP Pg (h) / Sg (h) DCP 2'; UNIS 2.2 SUUS 2.2 1.8 . a 1.8 j - . 1.4 0 Q '4 ° ‘ E . o 1.0 . o 9 . ‘23 1'0 o 3 06 1 g. . \ 0.6I oo o . 'I . if 0 . I 0 0 °o 8' ° 23 0.21 ° '3’ 8".I . 9.. ° 0 o. 0.2 . . C I C ' M." I -0.2 if s02 _ 0 o o " 5678910111213 5 6 7 8 9 10 11 12 13 K-Cbss K-Chss 2.2 DB] 2.2 . 1.8 . 1.8 * on... o a. 0000. 1.4 . g 1.4 ~ 0 i? 1.0 ¢ 0 . . :3 1.0 * m 0.6 . o. o ,1 0.6 * .0 . 4 ... . . 3 . oo 9. 0'2 0 ‘ E 0'2 I o. 'o -0.2 -02 1 - . . 5678910111213 5678910111213 K-Chss K-Chss 014Farth11flces 012 Explosions 014Eanhques 0 10Eprs'nns SEY 2.2 1.8 A. g 1.4 ~ (a :3? (1)0 4 0 o . 1 .6 ‘ ' i o. E 9 a. 0.2 :£.. ‘ o o.02 . v‘ ' 5 6 7 8 9 10 11 12 13 K-Chss o 26 Fartlnuakes 0 14 Explosions Figure B7. Pg(z)/Sg(z) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 177 z 7: Pg (2) / Sg (z) DCP Pg (2) / 83 (z) DCP 8 UNIS 3.0 SUUS 3.0 I 2.6 . o 2.6 4 1 O I O . a. 2.2 1 a. 2.2 ‘ 8 1.8 0a 1.8 4 o ° a 1,4 g 1.4 4 o ' .. o ‘3 1.04 ’o ‘.' :3 1.0« '0. ° 3 0.6 ...? ’° ' E 0.6: . .” ,fi. E 0.2 0 Q.‘5 "'.. a? 0.2 ‘ o. I on‘ o I O o-02 « - . -0.2 . . v 5 6 73 910111213 56 78910111213 K-Chss K—Chss O 46Earthquakcs 0 33 Eprsiom O 18 Eanlques 0 19Eprs'nm NKBS 3.0 4 DB] 3.0 _ 2.6 1 2.6 . 224 ° °°° - a. 22 ' ° E3 ' o . 8 ' o a 1.8 I . 1.8 d O . 5 1.4 4 0 3 1.4 « . 32° 0 . “I o \ 1.0 '4 .. r g 1'0 . .0 E 0.6 « . ' E 0.6 « .1. 4 O . 5'.” 0.2 . .. ' 8? 0,2 « «- ° '. .o .0 -0-2 r -0.2 - 5678910||1213 5678910111213 K-Chss K-Class 014 Maths 9 12 Eprsiors O 14 Eanlnmkes O 10Eprs'nm SEY 3.0 2.6 7 a. 2.2 4 U a 1.8 5 1.4 ~ a ‘3 1.0 * .0 . I 5 0.6 . 3.“ w o 9" 0.2 " fl ._02 1__‘+._‘_‘_._ 56789 10 11 12 13 K-Chss O 26 Earthqtnkes 0 14 Eprs'nns Figure BS. Pg(h)/Sg(z) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 178 UNIS 2.2 SUUS 2.2 1.8“ 8 1.8‘ 1.4 . a 1.4 " 5 1.04 o 1.0~ , O. if 05‘. .0 0.61 o O :. 0.. fi . . ? .0 ‘ o O. o ‘51 0.2“ O .“W. 0 0.2 a}. .' 0:0. fi‘ .0 . .01 f ’0.2 . Y‘. . . '0-2‘ * * s 6 7 8 910111213 5678910111213 1°C“ K-Chss O46EIr11nmkesO33Eprs'nm "swa'mimbsiom NKBS 1.8 DBI 2.2 1.4 1 1.8 ' _. o E; i 1.0 .Q . a 14? 9 O . E 1.01 0.6“ ’ m . .0 ‘ . .3 . . z 0.6 fl . . ° 0.. ' N o ‘ 0.2 a a 90 . . .020. a. 0.21 Q.- o. o. .002 I ' .02 1 T ‘ Y 56739‘011‘2‘3 5678910111213 K-Chss K-Cllss 014Emhquesoleprsiom 014Eanhque3010Eprsiom SEY 1.8 m 1.4 1 § 1.0. ’5 * : 5 0.6 0 .0 an - * a. _ . ... ...: -01 T 7 a T 5 6 7 8 9 10 ll 12 13 K-Chss o 26 Eamnmkes 014Eprs'nm Figure B9. Pg(z)/Sg(h) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 179 Pg (1) I 83 (h) DCP Pg (2) / 83 (h) DCP UNIS 2.2 SUUS 2.2 1.8 1.8 4 . “- 1.4 . 8 1.4 8 ‘ 9. G 10‘ ’ ‘ 5 1.0 . 0 g - 3' 8 °‘. > 0.6 1 : I. Z 0.61 on ..‘o. = 0 ..\~.. '5 ”.é.’ ‘. ° .2 0.2« 0'.’. u- 0.2 < . ‘ . 4 .. . . I. -0.2. .‘..i —0.2 1 4A. 5678910111213 5678910111213 K-Chss K-Clnss 046Eiartlnmkcs033Eprsbm 018Wc50191§prsbm NKBS 2.2 DBI 2.24 1.8 . 1.8 * 8 1.4 1 ’ a. 1.4 « Q ’0 8 ‘ o 0 . 1.0 * .. . . 1.0 q 0 o 00 a z .9 a O . > 0.6 1 o .. u > 0.6 1 .0 E 02 .0 . ' -"§ 1 O o . u- . 4 ... . u. 0.2 '1 ‘.. .. .. -02 -o.2 , , 5678910111213 5678910111213 K-Clm K-Chss . 14 Eanhques . 12 Eprs'nns 0 I4 Ennmmkes 0 10 Eprsiom SEY 2.2 1.8 1 8 1.4 i O 1.0 * i < . . > 0-6 O o "5‘: u. 0.2 . o i '. .00 -0.2 . . 5 6 7 8 9 10 ll 12 13 K-Chss o 26Ea111n1nkes 014Explos'mi Figure B10. Full vector DCP ratio for individual stations in the Magadan and Northern Yakutia region. 180 EEEEEEE HWWWWWN