UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO EFECTOS DE LA CONTAMINACIÓN ANTROPOGÉNICA SOBRE LA COMUNICACIÓN ACÚSTICA DE ANFIBIOS EN AMBIENTES URBANOS Tesis sometida a la consideración de la Comisión del Programa de Estudios de Posgrado en Biología para optar por el grado de Maestría Académica en Biología ANA CECILIA GUTIÉRREZ VANNUCCHI Ciudad Universitaria Rodrigo Facio, Costa Rica 2022 ii Dedicatoria A Dios y a mi familia, quienes siempre han estado a mi lado y son mi más grande apoyo. Agradecimientos A Dios y a mi familia, por apoyarme e impulsarme durante todo el proceso, por siempre sostenerme, recordarme mis capacidades y darme la oportunidad de hacer lo que amo. A mis padres Edith Vannucchi y Milton Gutiérrez, sin quienes nada de esto hubiese sido posible, gracias por estar a mi lado en cada paso de mi formación, y a mis hermanas por continuamente hacerme preguntas sobre ciencia y naturaleza, aunque muchas veces yo no supiera la respuesta. A mis amigas Catalina, Ximena y Gloriana, por nunca soltarme la mano y ser una red de seguridad en los momentos más retadores. Gracias por ser un ejemplo de perseverancia, esfuerzo y disciplina. A Ferli por compartir tantos años de universidad juntos y hacer este proceso aún más enriquecedor, les estaré siempre agradecida por toda su compañía y apoyo. Mi paso por biología no sería lo mismo sin ustedes. Al Laboratorio de Ecología Urbana y Comunicación Animal por facilitarme todas las herramientas y materiales necesarios para realizar este proyecto, y a sus integrantes por su tiempo y retroalimentación. A Luis Sandoval, Raúl Bartolo y a mi mamá Edith Vannucchi, por toda su ayuda con los muestreos, grabaciones de ranas y acompañarme al campo, y a Mónica Castro por su enorme ayuda con los análisis de cantos. Todos fueron parte invaluable de este proyecto, sin ustedes hubiese sido todo mucho más complicado. A mi increíble comité de tesis, Luis Sandoval, Branko Hilje y Sofía Rodríguez, por toda su paciencia, consejos, comentarios, discusiones y por creer en este proyecto. Gracias por todo el conocimiento que compartieron conmigo durante estos años, no son solo grandes científicos, sino también grandes personas. Y por último pero no menos importante, a la Universidad de Costa Rica, a la Escuela de Biología y al Sistema de Estudios de Posgrado, por darme la oportunidad de tener una formación de calidad, aprendizajes, recuerdos y personas para toda la vida. iii iv Índice general Contenido Página Dedicatoria y agradecimientos…………………………………………………………….. ii Hoja de aprobación………..……………………………………………………………… iii Resumen…..……………………………………………………………………………….. 1 Índice de cuadros…………………………………………………………………………... 3 Índice de figuras…………….……………………………………………………………... 4 Introducción………………………………………………………………………………... 6 Contaminación acústica……………………………………………………………. 7 Contaminación lumínica………………………………………………………….... 9 Especie de estudio………………………………………………………………... 10 Capítulo 1. Occurrences and effects of urbanization on amphibians: a review…………. 13 Abstract…………………………………………………………………………… 14 Introduction………………………………………………………………………. 14 Methods……………………………………………………………………........... 16 Literature search………………………………………………………….. 16 Data collection and analysis……………………………………………… 17 Results……………………………………………………………………………. 19 Discussion………………………………………………………………………… 20 Region differences in study publications………………………………… 20 Species classification and urban effects………………………………….. 20 Future directions of urban amphibian studies………………………......... 25 References………………………………………………………………………... 25 v Tables and Figures………………………………………………………………... 32 Appendix 1……………………………………………………………………….. 38 Capítulo 2. Effects of anthropogenic noise on the acoustic characteristics of a glass frog call in urban conditions…………………………………………………………………... 49 Abstract…………………………………………………………………………… 50 Introduction…………………………………………………………………......... 50 Methods……………………………………………………………………........... 53 Study sites………………………………………………………………… 53 Recording and noise level measurements………………………………… 53 Recording analysis…………………………………………………........... 54 Statistical analysis………………………………………………………… 55 Results……………………………………………………………………………. 55 Effects of chronic anthropogenic noise on male advertisement calls…….. 55 Effects of instantaneous anthropogenic noise……………………………. 56 Discussion………………………………………………………………………… 56 References………………………………………………………………………... 59 Tables and Figures………………………………………………………………... 64 Capítulo 3. Effects of light pollution and noise on the vocal activity of a glass frog in urban conditions………………………………………………………………………….. 68 Abstract…………………………………………………………………………… 69 Introduction………………………………………………………………………. 69 Methods……………………………………………………………………........... 72 Light measurements and recordings……………………………………… 72 Recording analysis…………………….………………………………….. 73 vi Statistical analysis………………………………………………………… 74 Results……………………………………………………………………………. 74 Discussion………………………………………………………………………… 75 References………………………………………………………………………... 78 Tables and Figures………………………………………………………………... 84 Appendix 1……………………………………………………………………….. 89 Conclusiones……………………………………………………………………………... 90 Bibliografía……………………………………………………………………………….. 92 1 Resumen El proceso de urbanización que se da de manera creciente a nivel mundial, conlleva cambios en el ambiente, entre los cuales se encuentra la aparición de contaminantes de origen antropogénico, en zonas donde antes no existían. Entre estos contaminantes se encuentran el ruido antropogénico y la contaminación lumínica, provocada por luces de origen artificial. Estos contaminantes pueden afectar distintos procesos en diferentes grupos de animales, entre los que se encuentra la comunicación acústica. La comunicación acústica es el principal método de comunicación en anuros, sin embargo, los efectos de la urbanización y más específicamente de la contaminación lumínica y el ruido antropogénico han sido menos estudiados en este grupo, que en otros grupos de animales como aves y mamíferos. Debido a esto, el conocimiento que tenemos sobre cómo los contaminantes antropogénicos pueden estar afectando la superviviencia de anuros en zonas urbanas, especialmente a largo plazo, es aún limitado. Nuestro objetivo con esta investigación fue determinar los efectos de la contaminación antropogénica en la comunicación acústica de anfibios presentes en ambientes urbanos. Más específicamente, queríamos determinar los efectos del ruido antropogénico y la contaminación lumínica sobre las características acústicas de las vocalizaciones de la rana de vidrio Hyalinobatrachium fleischmanni y sobre su actividad vocal. Esta especie de rana vive y se reproduce en quebradas pequeñas en ambientes urbanos, donde vocaliza desde las hojas, y está presente en sitios con distintos niveles de desarrollo urbano, con distintos niveles de intensidad lumínica y ruido. Además, el rango de frecuencia del canto de esta especie, traslapa en su parte baja con las frecuencias de ruido antropogénico, lo cual podría dificultar su comunicación acústica en ambientes con altos niveles de ruido. Realizamos una revisión bibliográfica de literatura científica a nivel global, para determinar el estado de conocimiento sobre anfibios en ambientes urbanos. Y obtuvimos la locación geográfica de los estudios, clasificamos las especies como “N/A” (cuando no teníamos suficiente información para clasificarlas),“explotadoras”, “sobrevivientes” y “evitadoras”, y los efectos de la urbanizaicón como “positivos”, “neutros” y “negativos”. Encontramos que la mayor cantidad de estudios pertenecieron al norte global, y fueron en su mayoría realizados en Estados Unidos. El mayor porcentaje de especies fue categorizada como N/A, seguido por especies evitadoras. Además, el mayor porcentaje de estudios indicó efectos negativos, lo cuales fueron reportados principalmente para las 2 especies evitadoras. El efecto negativo más reportado fue baja abundancia y/o ocurrencia de especies, y el efecto positivo más reportado fue alta abundancia y/o ocurrencia. Para investigar los efectos del ruido antropogénico en las características acústicas del canto de H. fleischmanni, trabajamos en dos sitios con distinto grado de desarrollo urbano. Grabamos 56 machos y medimos 7 caracterísiticas acústicas para el canto de cada macho y las relacionamos con el nivel de ruido antropogénico en ambos sitios. Encontramos que la duración del canto y el tiempo entre cantos fueron mayores en el sitio urbano, el cual tenía un nivel de ruido crónico mayor, y que la duración de la llamada y el tiempo entre llamadas disminuyó conforme aumentó el nivel de ruido crónico. La frecuencia mínima y la frecuencia de máxima amplitud también fueron mayores en el sitio con mayor nivel de ruido crónico. En cuanto al ruido instantaneousáneo, encontramos que el tiempo entre llamadas disminuyó con el aumento del ruido instantaneousáneo, pero el resto de las características acústicas no variaron. Es decir, el ruido crónico e instantaneousáneo, afectan de manera distinta las características acústicas del canto de H. fleischmanni. Para determinar los efectos de la contaminación lumínica y el ruido en la actividad vocal de H. fleischmanni, trabajamos en dos sitios con diferente grado de urbanización, ruido y abundancia de luces artíficiales. Medimos la intensidad lumínica y el ruido de fondo en cada punto de muestreo dentro de cada sitio de estudio, y dividimos los puntos de muestreo entre “iluminados” y “oscuros”, dependiendo de la cantidad de luz artificial en cada uno. Grabamos la actividad vocal de H. fleischmanni de las 16:00 a las 6:00 h en cada sitio de muestreo y obtuvimos una proporción de cantos por hora. El pico de actividad de la especie de estudio fue entre las 19:00 h y las 22:00 h. Al relacionar la proporción de cantos con los niveles de contaminación lumínica y ruido de fondo, encontramos que el ruido de fondo afectó los patrones de actividad vocal de manera distinta dependiendo de la hora, sin embargo, no encontramos un efecto de la contaminación lumínica sobre los patrones de actividad vocal de H. fleischmanni. 3 Índice de cuadros Capítulo 2. Table 1. Acoustic characteristics of Fleischmann’s Glass Frog calls, in two sites with different levels of urbanization. Values are average ± SD.………………………………. 65 Capítulo 3. Table 1. Summary of the results for generalized linear mixed models with zero-inflated and Gaussian distribution, used to test if the proportion of calls changed according to different variables and their interactions…..…………………………………………………………………………… 84 4 Índice de figuras Introducción. Figura 1. Mapa de Costa Rica con el Gran Área Metropolitana señalada en rojo. Tomado del Plan de Ordenamiento Territorial de la Gran Área Metropolitana 2011-2030 (Rosales, 2012)……………………………………………………………………………………… 12 Capítulo 1. Figure 1. Percentage of urban effect studies on amphibians per country or region until November 2020 (n =104)…...……………………………………………………………. 32 Figure 2. Percentage of urban effect studies per geographic region until November 2020 (n = 104)......…..…………………………………………………………………………….. 33 Figure 3. Percentage of studies including amphibians in urban areas, per effect category of urbanization on amphibian species. Percentages add up more than 100% because some studies reported more than one effect in the same publication, for example, a positive effect for one species but a negative effect for other species….………………………………... 34 Figure 4. Number of studies with negative, neutral and positive effects for each species category…………………………………………………………………………………... 35 Figure 5. Number of studies on each negative effect category, per species category (i.e. avoiders, survivors, exploiters, and N/A)..………………………………………………. 36 Figure 6. Number of studies on each negative effect category, per species category (i.e. avoiders, survivors, exploiters, and N/A)..………………………………………………. 37 Capítulo 2. Figure 1. A. Map of Costa Rica with the two study sites marked with blue dots, and the square marking the Gran Área Metropolitana, where the study sites are located. B. Yellow dots mark the two study sites, the yellow dot on the bottom marks the urban study site, and the yellow dot on the top marks the rural study site. C. Urban study site with a creek marked in blue. The course of this creek was followed to put the automated recorders. D. Rural site with the creek followed to put the automated recorders marked in blue……… 64 5 Figure 2. Relationship between seven acoustic characteristics of Fleischmann’s Glass Frog male calls, and the chronic anthropogenic noise level (dB)……………………………… 66 Figure 3. Relationship between the time between calls in Fleischmann’s Glass Frog male calls and the instantaneous anthropogenic noise level (dB)……………………………… 67 Capítulo 3. Figure 1. Light intensity measurement points within each light and dark sampling point. The star at the center marks the location of the recorder and one light intensity measurement point. The red dots mark four light intensity measurement points taken 2 m apart from the recorder and at 90° from each other……………………………………… 85 Figure 2. Figure shows average levels of light intensity (lux) and background noise level (dB -1) between sites with lower and higher levels of urbanization in our study (first line), between light and dark sites in our study (second line), and for the interaction of light intensity and study site (third line on the left), and the interaction of background noise and study site (third line on the right)………………………………………………………… 86 Figure 3. Proportion of Fleischmann’s Glass Frog calls per hours of the day. The dots represent the mean call proportion per each recorded hour including all sampling points in the study, with their standard deviation represented by the lines………………………… 87 Figure 4. Proportion of calls in relation to the background noise level (dB) for each recorded hour from 16:00 h to 6:00 h. Each square shows the call proportion distribution according to the background noise level (dB) for each of the 14 recorded hours separately…………………………………………………………………………………. 88 6 INTRODUCCIÓN El proceso de urbanización es un fenómeno creciente a nivel mundial que conlleva la expansión de zonas urbanas hacia zonas rurales, y la de estas hacia zonas naturales (Joyce, 2006). Este proceso se asocia a un acelerado crecimiento poblacional en escala global, durante las últimas tres décadas (Stein et al., 2000; McKinney, 2002; Estado de la Nación, 2018). En Costa Rica el crecimiento urbano ha sido incentivado por las políticas económicas y sociales, causando una rápida expansión horizontal del Gran Área Metropolitana (GAM; Limitada al este por Ochomogo, al oeste por San Ramón y Atenas, al norte por la Cordillera Volcánica Central y al sur por los Cerros de Escazú) (Fig.1) (Estado de la Nación, 2018). Esto ha provocado la eliminación de plantaciones (de café, caña o pasto), zonas de crecimiento secundario, o remanentes de bosques, para la construcción de viviendas y comercios (Joyce, 2006; Pauchard et al., 2006; Estado de la Nación, 2018). El aumento de la urbanización produce un incremento en la contaminación sónica, lumínica, del aire y los suelos, aumenta la temperatura, la compactación de suelos y acelera la pérdida de los parches de vegetación natural (Medley et al., 1995; Pickett et al., 2001; McKinney, 2002). Estos cambios en la estructura del ambiente causan una disminución o desplazamiento de la mayoría de las especies nativas de la zona, debido al cambio de las condiciones ambientales necesarias para su supervivencia (Marzluff, 2001; McKinney, 2002; Biamonte et al., 2011). Este desplazamiento de especies nativas genera un aumento en un número pequeño de especies colonizadoras que contribuye a la homogenización de la diversidad en sitios urbanos (Blair, 2001). Con los cambios en el ambiente producto de la urbanización aparecen tres clasificaciones para los animales, que dependen de su respuesta a estos cambios. Existen 1) las especies “evitadoras”, que se alejan del centro urbano y se mantienen en el interior de los bosques, 2) las especies “adaptadoras” que usualmente tienen cierto grado de tolerancia a los cambios por urbanización, y que normalmente se encuentran en las periferias de los centros urbanos y por último 3) las especies “explotadoras”, las cuales suelen ser comensales y toman provecho de los recursos que la urbanización les presenta, como fuentes estables de alimento y agua de origen antropogénico; este último grupo de especies ha sido capaz de adaptarse y sobrevivir bajo estas condiciones. (McKinney, 2002). Algunos ejemplos de especies “evitadoras” son las aves Crypturellus soui y Myadestes melanops (Biamonte et 7 al., 2011), lagartijas como Uta stansburiana y Phrynosoma solare (Germaine & Wakeling, 2001) y algunos mamíferos como el zorro rojo (Vulpes vulpes) (Randa & Yunger, 2006). En cuanto a ejemplos de especies “adaptadoras” se encuentran algunos anfibios como el sapo Alytes obstetricans y las ranas Pelophylax ridibundus y aves como la lechuza Strix aluco y la garza Ardea cinerea (Laurian, 2012). Por último existen varios ejemplos comunes de especies “explotadoras” como las palomas comunes (Columba livia) y los zanates (Quiscalus mexicanus), los mapaches (Procyon lotor) y ratas (Rattus rattus) y anfibios como la rana coquí (Eleutherodactylus coqui), que alcanzan densidades mucho mayores en zonas urbanizadas que en zonas naturales (Woolbright et al., 2006). Los estudios de especies que han logrado adaptarse a zonas urbanas son limitados y la mayoría están representados por reportes de aves (Blair, 2001; Marzluff, 2001; Biamonte et al., 2011) y de riqueza de especies en ambientes urbanos versus ambientes rurales para mamíferos, lagartijas y algunos insectos (Mackin-Roglaska et al., 1988; Germaine & Wakeling, 2000; McIntyre, 2000; Pawlikowski & Polorniecka, 1990; Nuhn & Wright, 1979). Para anfibios, existe aún menos información sobre las especies que han logrado adaptarse a estos cambios en el ambiente y los efectos que la urbanización ha tenido sobre el grupo en general (compilado en Mitchell et al., 2008). Dado el acelerado crecimiento del proceso de urbanización, es de vital importancia tener conocimiento sobre la ecología de diversos grupos, tanto en ambientes naturales como urbanos, para comprender las adaptaciones a nuevas fuentes de contaminación. Por ejemplo, la contaminación acústica por ruido antropogénico (motores, música) y la contaminación lumínica por la aparición de fuentes de luz artificial durante la noche, que pueden afectar la ecología de diferentes especies de animales. Contaminación acústica La comunicación acústica representa una de las formas de comunicación principal en muchos grupos de animales como aves, mamíferos, anfibios y reptiles (Ryan, 2001; Bradbury &Vehrencamp, 1998). Ya que es utilizada en las interacciones sociales como cortejo, copula, defensa de territorio, o encuentros agonísticos (McGregor, 2005; Brumm, 2013; Vitt & Caldwell, 2013). Los sonidos utilizados en la comunicación acústica están determinados por múltiples parámetros o características espectro-temporales como lo son la energía del sonido en decibeles, la frecuencia en hertzio, la duración del sonido y la temporalidad (momento del día en que se realiza) (Bradbury & Vehrencamp, 1998). 8 Las características del ambiente (como ruido por viento y fuentes de agua, densidad de la vegetación y temperatura), influyen en la forma en que se comunican acústicamente los animales, como lo propone la Hipótesis de Adaptación Acústica (Morton, 1975; Hansen, 1979). Una nueva característica del ambiente que puede afectar la comunicación acústica es el ruido antropogénico producto de los motores de los vehículos (ej. automóviles, trenes, aviones), motores de fábricas, el paso de personas, la música, y cualquier otra fuente de sonido producido por los humanos. El ruido antropogénico, contrario al ruido de origen natural (producido por ríos, viento, cantos de otras especies), es más constante en el tiempo, es de origen muy reciente (desde mediados del siglo XVIII con la revolución industrial), y ocurre en sitios que antes no poseían altos niveles de ruido (Kunc & Schmidt, 2019). Lo anterior dificulta que muchas especies de animales puedan comunicarse por medio de vocalizaciones (señales acústicas) dentro de zonas urbanas, ya que las frecuencias de sus vocalizaciones traslapan con las frecuencias del ruido antropogénico (enmascaramiento de las señales acústicas) que ocurre por debajo de los 5kHz (Wood &Yezerinac, 2006; Hanna et al., 2014). Se ha encontrado que algunos grupos de animales tienen la capacidad de modificar las características espectro-temporales de sus vocalizaciones para evitar el enmascaramiento por ruido antropogénico (Slabbekoorn & Peet, 2003). Dentro de las estrategias que utilizan distintos grupos de animales para evitar el enmascaramiento acústico, está aumentar las frecuencias de su canto para reducir o eliminar el traslape con el ruido, como sucede para varias especies de aves como Parus major (Slabbekoorn & Peet, 2003) y algunos anfibios como la rana Litoria ewingii (Parris et al., 2009). También pueden modificar los periodos de vocalización para evitar las horas con mayores niveles de ruido como ocurre en algunos mamíferos como el mono Callicebus nigrifrons (Duarte et al., 2018) o modificar su tasa de canto como el caso de las ranas Microhyla butleri y Rana taipehensis (Sun & Narins, 2005). Esta variación de las características espectro-temporales del canto o periodos de vocalización, se conoce como plasticidad acústica y esta a su vez puede variar entre poblaciones o entre individuos de una misma población (Cunnington & Farig, 2010). La plasticidad acústica permite a las especies minimizar los efectos de enmascaramiento por ruido antropogénico. Sin embargo, se sabe que modificar la intensidad y frecuencia del canto, vocalizar una mayor cantidad de horas, o cantar a horas distintas de las horas usuales de actividad implica un gasto de energía mayor para algunos individuos (Brumm, 9 2013). El efecto del ruido en las vocalizaciones de anuros ha sido poco estudiado en comparación con otros grupos de animales y los estudios han tenido resultados diversos en cuanto a modificación de las vocalizaciones en este grupo (Sun & Narins, 2005; Bee & Swanson, 2007; Lengagne, 2008; Herrera-Montes & Aide, 2011 ). De modo que las estrategias que utilizan los anfibios, para evitar el enmascaramiento acústico por ruido antropogénico y las implicaciones que esto tiene en la plasticidad de sus vocalizaciones aún son poco conocidas. Contaminación lumínica La urbanización aumenta la cantidad de fuentes de luz no naturales durante las noches. Este tipo de iluminación está constituida por cualquier fuente de luz de origen antropogénico -las luces de las calles, estadios, casas, carros, anuncios- (Perry et al., 2008), tiende a ser mucho más brillante que la luz natural y afectan todas las áreas urbanas (Cinzano et al., 2001; Bennie et al., 2015). Esto genera en dichas áreas contaminación lumínica, definida como un exceso de luz proveniente de fuentes antropogénicas. Adicionalmente, el brillo de estas luces se refleja en las nubes causando una iluminación nocturna mayor a la natural, especialmente en las áreas adyacentes a los centros urbanos (Cinzano et al., 2001). En consecuencia los efectos de la contaminación lumínica se expanden más allá de los sitios donde están presentes las fuentes de luz artificial. A pesar del gran alcance que puede llegar a tener la contaminación lumínica, sus efectos sobre la fauna y el ambiente en general han sido mucho menos estudiados que los de otros tipos de contaminación de origen antropogénico como la contaminación por sólidos, la contaminación acústica, o la química (Longcore & Rich, 2004; Perry et al., 2008). La mayoría de los estudios sobre contaminación lumínica, ha estudiado su efecto en aves, siendo el resultado principal el cambio en los patrones temporales de actividad acústica en aves diurnas (Miller, 2006; Da Silva et al., 2015). Al haber un exceso de luz durante la noche, las aves extiendan sus horas de actividad aumentando las horas de vocalizaciones en el día, y por ende reduciendo el tiempo de descanso (Byrkjedal et al., 2012; Raap et al., 2015). En peces como salmones se ha encontrado que la luz artificial causa una detección mayor de presas y altera el tiempo de migración nocturna (Metcalfe et al., 1997; Riley et al., 2012). En mamíferos, como algunos roedores nocturnos, se han encontrado cambios en su ciclo circadiano y una actividad nocturna reducida (Sharma et al., 1997; Kramer & Birney, 2001). Los estudios para medir el efecto de esta 10 contaminación en reptiles son escasos (Perry et al., 2008) y se centran básicamente en el análisis de la actividad de forrajeo y reportes de ocurrencias de especies cerca de centros con luz artificial (Case et al., 1994; Meshaka et al., 2004; Powell et al., 2005; Perry & Fisher, 2006). La excepción en este grupo son los estudios que han analizado los efectos adversos de la iluminación artificial en el comportamiento de desove de las tortugas marinas (Witherington & Martin, 2000; Tuxbury & Salmon, 2005; Bourgeois et al., 2009; Kamrowski et al., 2012), por ser importante para la conservación de las playas de anidación. Los anfibios tampoco son la excepción a la falta de información del efecto de la contaminación lumínica, pese a que son un grupo principalmente nocturno (Savage, 2002; Perry et al., 2008). La comunicación acústica en anuros (ranas y sapos) es de vital importancia para todas sus interacciones sociales, y por ende la temporalidad de su actividad acústica se vuelve también un factor determinante para la comunicación efectiva entre individuos (Schwartz & Bee, 2013; Vitt & Caldwell, 2013; Bevier, 2016; Colafrancesco & Gridi-Papp, 2016). Un aumento en el nivel de iluminación podría significar un cambio en las horas de actividad y en el comportamiento de varias especies (Meshaka et al., 2014, Henderson & Powell, 2001; Perry & Fisher, 2006). Los efectos que esto pueda tener sobre las relaciones entre individuos (ej.: atracción de pareja, defensa de territorio, o detección de depredadores) tanto a nivel intra- como inter-específico son aún desconocidos. Por lo tanto, estudiar el efecto de la contaminación lumínica sobre las especies de anuros que habitan áreas urbanas es necesario para generar medidas correctivas y de manejo que faciliten la conservación de estas especies. Especie de estudio A pesar de los efectos de la contaminación acústica y lumínica sobre la comunicación acústica, se conoce que hay especies de anfibios que sobreviven y se reproducen en ambientes urbanos como los anuros (Perry et al., 2008). La rana de vidrio Hyalinobatrachium fleischmanni vive y se reproduce dentro de pequeños ríos en ambientes urbanos, desde donde cantan sobre las hojas (Kubicki, 2007). El canto de esta especie presenta un rango de frecuencias entre 3.8 y los 5.3 kHz (Savage, 2002; Kubicki, 2007), traslapando así con las frecuencias del ruido antropogénico. Al ser una especie común en ambientes urbanos, puede ver afectada su comunicación acústica por los altos niveles de ruido o la iluminación intensa y constante presente en estos ambientes. Esta situación 11 puede provocar el enmascaramiento de sus señales acústicas, evitando que el mensaje sea transmitido al receptor de forma efectiva. Debido al traslape entre el canto y el ruido, y la presencia de iluminación artificial en ambientes urbanos, espero que H. fleischmanni modifique las características espectro-temporales de su canto y las horas de actividad acústica, para mejorar la eficiencia de su comunicación. 12 Figura 1. Mapa de Costa Rica con el Gran Área Metropolitana señalada en rojo. Tomado del Plan de Ordenamiento Territorial de la Gran Área Metropolitana 2011-2030 (Rosales, 2012). 13 Capítulo 1. Occurrences and effects of urbanization on amphibians: a review 14 Abstract. Urbanization causes changes in natural landscapes. It causes a decrease or displacement of native species from urban areas, contributing to homogenization of diversity. Based on the response of a species to changes in the environment, they can be classified into urban “exploiters”, “survivors”, and “avoiders”. Because amphibians in urban areas have been less studied than other animal groups, our knowledge of the effects of urbanization on amphibians is limited. Our goal was to conduct a literature review about the occurrence of amphibians in urban areas, and the effects of urbanization on amphibians at a global scale, to identify information gaps and propose future research directions. We conducted a search of peer-reviewed scientific literature and from 104 selected studies; we extracted the geographical location, the effects of urbanization reported (positive, negative, neutral) and the species abundance/occurrence to classify them as exploiters, survivors or avoiders. The United States had the largest number of studies, and the majority of studies belonged to the Global North. The highest percentage of species was categorized as N/A followed by avoiders. The highest percentage of studies indicated negative effects, and those negative effects were mostly reported for avoider species. The most commonly reported negative effect was low abundance and/or occurrence, and the most commonly reported positive effect was high abundance and/or occurrence. Only a small group of species (exploiters) obtained benefits from urban sites, and the large majority of studies come from the Global North, where species richness is lower. This, along with a lack of long-term studies, can compromise our understanding of the effects of urbanization on amphibians. We recommend increasing the number of long-term studies in the Global South, making direct comparisons between urban and natural environments, and continuing to make species classifications regarding their response to urbanization, to better standardize future revisions. Key words: urban ecology, city, amphibians The process of urbanization is a growing phenomenon worldwide, which entails the expansion of urban areas towards rural areas, and the expansion of rural areas to natural areas (Joyce, 2006). It is associated with a rapid population growth worldwide, especially during the last three decades (Stein et al., 2000; McKinney, 2002; Estado de la Nación, 2018). Currently, urban areas constitute approximately 4% of the earth’s surface and support more than 50% of the human population (Rosen, 2000; United Nations Department of Economic and Social Affairs, 2019). Urbanization encompasses the physical, anthropological, and economic processes that change natural landscapes to those 15 dominated by human activities (Mitchell & Brown, 2008). The increase in urbanization produces an increase in noise, light, air and soil pollution, temperature, soil compaction, and accelerates the loss of natural vegetation patches (Medley et al., 1995; Pickett et al., 2001; McKinney, 2002) producing a decrease or displacement of native species of fauna from urban areas (Marzluff, 2001; McKinney, 2002; Biamonte et al., 2011). This displacement of native species generates an increase of colonizing species that contribute to the homogenization of diversity in urban areas (Blair, 2001). Based on how species respond to changes in the environment that are produced by urbanization, species are classified in three groups (McKinney, 2002). "Avoider" species move away from the urban center and stay inside the forests. "Survivor" species usually have a certain degree of tolerance to changes caused by urbanization, and are normally found on the outskirts of urban centers. “Exploiter” species are usually commensals and take advantage of the resources offered by urbanization, such as stable sources of food and water of anthropogenic origin, and are able to adapt and survive under these urbanized new conditions, and might become dependent on urban resources (McKinney, 2002). Studies of species that adapt to urban areas are limited and are most represented by reports of birds (Blair, 2001; Marzluff, 2001; Biamonte et al., 2011), as well as studies of species richness in urban environments versus rural environments for mammals, lizards, and some insects (Mackin-Roglaska et al., 1988; Germaine & Wakeling, 2000; McIntyre, 2000; Pawlikowski & Polorniecka, 1990; Nuhn & Wright, 1979). Therefore, to understand which species are part of each group (“avoiders”, “survivors”, and “exploiters”), and how they respond to environmental changes, it is key to analyze the impact of urbanization on multiple animal groups and species. Amphibians have been less studied in urban areas relative to birds (e.g., Erz, 1966; Marzluff, 2001; Seress & Liker, 2015; Isaksson, 2018), plants (e.g., Pysek, 1989; King & Buckney, 2000; Chocholouskova & Pysek, 2003, Witting, 2004), and arthropods (e.g., McIntyre, 2000; Raupp et al., 2010; Bang & Faeth, 2011; Fenoglio et al., 2020). However, reports of amphibians in urban areas appeared as early as 1902, from the city of Washington, with a list of the batrachia and reptilia of the District of Columbia and vicinity (Hay, 1902), and in 1905, with a report of the batrachians in the vicinity of New York City (Ditmars, 1905; Mitchell & Brown, 2008). More recently, studies about the effect of urbanization on amphibians have focused on determining which species are present and can survive in urban areas (Entiauspe-Neto et al., 2016; Hill et al., 2017; Melo et al., 2018; 16 Ingle et al., 2019; Konowalik et al., 2020) and on the causes of population declines in cities (Martinez-Solano & García-Paris, 2001; Mollov, 2005; Price et al., 2006; Mitchell & Brown, 2008). But, information about other ecological processes (e.g., diet changes, mortality rate, or reproductive success), evolutionary responses (e.g., behavioral adaptation, or genetic and morphology changes), and changes in communication (e.g., changes in duration and frequency of calls) of amphibians in urban areas is still limited (Mitchell & Brown, 2008). Additionally, the majority of studies about amphibians in urban areas are from temperate regions (Mitchell, Brown & Barholomew, 2008). Given the rapid growth of urbanization, and very limited knowledge of its effect on amphibians, it is timely to generate a literature review to better understand how species are responding to urbanization. Therefore, our main goal was to conduct an exhaustive literature review about the ocurrence of amphibians in urban areas and the main effects of urbanization on this group. We also want to identify information gaps and propose future research directions to improve the knowledge of amphibian urban ecology and conservation. Methods Literature search We conducted a search of peer-reviewed scientific literature in November 2020 using Google Scholar (https://scholar.google.com/) and Web of Science databases (http://webofknowledge.com). Both databases were used to search for the following terms and their combinations: “Urban herpetofauna”, “Urban amphibians”, “cities” AND “herpetofauna”, “cities” AND “amphibians”, “cities” AND “frogs”, “cities” AND “salamanders”, “cities” AND “newts”, “cities” AND “caecilians”. For each search, we checked only the first 50 references that were generated, because after 50, the references started to repeat between searches, or the results were not very relevant to the term searched. In addition, we reviewed the bibliography of all selected peer- reviewed manuscripts in order to include other sources of information in the review. Also, we decided to exclude meta-analyses and previous reviews that included amphibians (n =43), because we preferred not to use previously analyzed data, and rather use the original source of information. Therefore, we considered the literature used in these reviews and https://scholar.google.com/ http://webofknowledge.com/ 17 meta-analyses, and included the references that met our choice criteria (see below), if they were not found previously under the search terms in both databases. Data collection and analysis We obtained 245 studies from the database search and 41 from reviewing the literature of the studies selected from the database, meta-analyses, and other reviews. To be included in the analysis, the studies needed to report the occurrence of amphibians in urban environments (presence, abundance, or comparison between urban or other habitats) or report the effects of urbanization on amphibian morphology, behavior, survival, diet, or evolution. We excluded studies that analyzed the effect of anthropogenic pollutants in laboratories or experimentally inside cities. We also excluded reports of amphibian deaths on roads, if roads were outside of cities (i.e., a road outside of a natural park or in the middle of a desert), or did not compare city roads versus rural, or natural roads or a gradient of road density as a measure for urbanization. After all these selection criteria, 104 studies met the inclusion criteria and were used in this study (Appendix 1). From all selected studies, we extracted the geographical location of the reports, the effects of urbanization on amphibians when compared to natural or rural environments or reported by the authors (i.e., positive, negative, neutral), and its relative or quantitative abundance. We used the species abundance or occurrence in each study (when include in the study) to classify the species into three groups: exploiters, survivors, or avoiders. Species were classified as exploiters if there was a reported increase in population size or colonizing events when compared between rural or natural environments, when the population size or abundance was greater at urban sites compared to rural or natural sites, if the species were classified as “abundant”, “very common” or “common” by the authors, or if they had an occurrence percentage of 50% or more in the urban study sites. Species were classified as urban survivors if the population size was not larger in either rural or natural areas but species were still present in urbanized areas, if the population size was constant over time as long as it was not a species classified as “abundant”, “very common” or “common”, or if the occurrence percentage was between 15% and 49% in the study sites. Finally, species were classified as avoiders if the population size was very small or the species were not found in the more urbanized areas, if the species were classified as “uncommon” or “rare”, or if they had fewer than 15% of occurrence in the study sites. The criteria we used for the classification of amphibians and the effects of urbanization in this review were based on 18 and then adapted from the definitions of McKinney (2002). When the studies did not give enough information according to our criteria to put the species in one of the three aforementioned categories, we classified them as N/A. For the effect of urbanization on amphibian biology we classified it as positive when there was an increase in population size, a higher number of colonization events, the species was more common or abundant in urban areas than in natural areas or there was a more specific positive effect reported by the authors (increase in the individual size or lower mortality). We classified the effect as negative when the population size decreased due to urbanization or the species was only found in non-urban areas, or when there was a more specific negative effect reported by the authors (low genetic variability, mortality due to road collisions, tissue damage). When the effect could not be clearly classified as positive or negative, or when there was not enough information in the study to classify it in one of the aforementioned categories according to our criteria, we classified it as neutral. We calculated the percentage of each species category (exploiter, survivor, avoider, and N/A) per study, and then estimated the average for all studies. We also calculated the average number of species per category, in the studies that reported each category (average number of exploiter species in the studies that reported exploiter species). We calculated the percentage of studies for each effect category of urbanization on amphibians (positive, negative, or neutral), and the percentage of each effect category per amphibian category (exploiter, survivor, avoider, or N/A). We also calculated the percentage of studies per geographical location. Finally, we classified the negative and positive effects of urbanization into categories, to count which were the most common negative and positive effects reported in the literature. We classified the negative effects into: 1) Reduction or small population size, 2) Reduction or low genetic variability, 3) Low abundance and/or occurrence in urban spaces, 4) Lower species richness, 5) Local extinction of one or more species in a study site due to urbanization, 6) Mortality reports due to urbanization, 7) Negative reproductive effects, and 8) Physiological damage (tissue damage or negative hormonal effects). We classified the positive effects into: 1) Increase in or large population size, 2) High abundance and or/occurrence, 3) Higher species richness, 4) Colonization events, 5) Fewer diseases, and 6) Positive effects on survival. Then, we counted the number of studies that reported positive or negative effects on each category, per species category (avoiders, survivors, 19 exploiters, and N/A). We did this in order to identify where the majority of information is generated (and therefore, where there is a lack of information) geographically, how the majority of amphibians are responding to urbanization (exploiters with positive effects or avoiders with negative effects), and what are the most commonly reported effects (whether positive or negative) for amphibians in urban environments. Results We found 104 studies that met inclusion criteria, which were conducted in 29 different countries or regions. The United States had the largest number of studies, representing 37.5%, followed by Australia with 14.4%, and Brazil with 6.7%. The other 26 countries each accounted for less than 5% of the studies and 41.3% combined (Fig. 1). When we divided the studies into eight geographic regions (according to the Department of Homeland Security of the United States, https://www.dhs.gov/geographic-regions), North America accounted for the highest percentage of studies with 42.3%, followed by Europe with 25.0%, and Oceania with 14.4%. The other geographic regions accounted for less than 10% of the studies (Fig. 2). On average, the highest percentage of species in the studies were categorized as N/A (40.6% ± 47.2%), followed by avoiders (23.9% ± 32.5%), survivors (18.7% ± 30.1%), and the lowest percentage was classified as exploiters (16.8% ± 27.8%). For the studies in which species were classified as N/A, the average number of N/A species studied was 5.6 ± 6.5. For the studies that reported survivors, the average number of survivor species studied was 5.4 ± 6.8. For the studies that reported avoiders, the average number of avoider species studied was 4.5 ± 3.6; and for the studies that reported exploiters, the average number of exploiter species studied was 3.2 ± 1.6. Most studies indicated negative effects of urbanization on amphibians, followed by neutral effects, and then positive effects (Fig. 3). When we combined the species classifications and the effects classifications we found that for avoider species, the highest number of studies indicated negative effects. For the survivor species, the highest number of studies indicated neutral effects, followed by negative effects. For the exploiter species, the highest number of studies indicated positive effects, and for the N/A species, the highest number of studies indicated neutral and negative effects (Fig. 4). 20 The most commonly reported negative effect of urbanization for amphibians was low abundance and occurrence (n = 54), and it was mostly reported for avoider species (n = 35), followed by lower richness (n = 13), and reduction of population size (n = 12), also mostly reported for avoider species (n = 5 and n = 4, respectively; Fig. 5). The most commonly reported positive effects of urbanization for amphibians were high abundance and/or occurrence (n = 22) mostly reported for exploiter species (n = 20), and colonization events (n = 3), and higher population size (n = 2), also mostly reported for exploiter species (n = 3 and n = 2, respectively; Fig. 6). Discussion Regional differences in study publications We found that most of the studies included in this review were conducted in North America, more specifically in the United States, followed by the European region and Australia, which means most of the studies were conducted and produced by the Global North. This might be because these are regions with high levels of urban development (United Nations Department of Economic and Social Affairs, 2019), as well as greater economic resources (as developed countries) compared to other areas of the world like Central America, South America, and Africa, where developing countries are located (United Nations Department for Economic and Social Affairs, 2020). This agrees with the findings of Karlsson et al. (2007), who found that most of the papers included in their review were published in the Global North or temperate/cold regions (around 80%), while the least number of studies were published from and about the Global South or sub- tropical/tropical regions (around 13%). Several authors have also demonstrated that the number of scientific contributions are related to the economic resource of countries (Rodriguez-Navarro & Brito, 2022; Allik et al., 2020; Cimini et al., 2014), which is also supported by our results. Species classification and urban effects Many studies did not provide enough information, according to our criteria, to classify the species into avoiders, survivors or exploiters, but when we were able to classify the species into these categories, the majority of reports were of avoider species, and the minority of exploiter species. The studies that reported exploiter species had, on average, a lower 21 number of species per study than the studies that reported avoider and survivor species. This indicates that, according to our criteria, most of the amphibian species included in urbanization studies were avoiders, and the least were exploiters. Our results support Blair´s (2001) idea about diversity homogenization in cities, because there is evidence for a lower number of species that are able to adapt to the urbanization process, live, and reproduce successfully in urban centers (urban exploiters). Therefore, it is likely that the species commonly found in urban areas and major cities of a region are the same. This colonization phenomenon by urban exploiters may be increased, since the effects of urbanization present a threat and cause displacement of native species in urban areas (Marzluff, 2001; McKinney, 2002; Biamonte et al., 2011). The majority of the studies we included in this review reported negative effects of urbanization on amphibians, and the minority reported positive effects. This suggests that according to our results, the negative effects of urbanization on amphibians overcome the positive effects. The type of species with higher positive reports was the exploiters, and there were no positive effects reported for avoider species, so the positive effects are only benefiting a restricted group of species. We found the same for the survivor and N/A species, which did have some positive effects reported, but the majority were either neutral or negative. The most common negative effect reported was a lower abundance and/or occurrence of amphibian species in urban sites. For example, for the salamander species Eurycea cirrigera, larval abundance decreased with an increase in the gray area (e.g. buildings, houses and streets) around studied streams, due to a low basal flux of the stream, and changes in the water chemistry in urban and sub-urban sites of North Carolina, USA (Miller et al., 2007). The same was found in Atlanta, Georgia, USA with the salamander Desmognathus fuscus fuscus, where urbanization produced physical instability of riparian habitats because of increased runoff and erosion at most disturbed sites, and for this reason population density was inversely proportional to the urbanization degree (Orser & Shure, 1972). For the species Hyla arborea in Switzerland, urbanization had a negative effect on the occurrence in studied ponds, even within a 1 km buffer (Pellet et al., 2004), and a different study found that this species was not present, or that it was rare in the most urbanized areas of the city of Plovdiv, Bulgaria, because of a lack of suitable habitat (Mollov, 2005). The species Eurycea tonkawae had a significantly lower average density in developed areas of Texas, USA (with more than 10% of impervious surface) associated 22 with urbanization, compared to undeveloped areas (less than 10% impervious surface; Bowles et al., 2006). A study in the central Amazonia, in Brazil, reported 13 different amphibian species with a lower abundance in urban sites compared to rural sites, and five other species had a higher abundance in urban sites (Menin et al., 2019). The second most commonly reported negative effect for amphibians was lower species richness in urban sites, compared to less urbanized or natural sites. In a study of the larval amphibian community in wetlands along an urbanization gradient in central Pennsylvania, USA, it was found that there was a lower richness of amphibian larvae in wetlands with a higher level of urbanization, compared to rural wetlands, as well as a decrease in the occurrence of adults of the frog Rana sylvatica, and the salamanders Ambystoma maculatum and Ambistoma jeffersonianum (Rubbo & Kiesecker 2005). In central Amazonia, Brazil, researchers determined the composition and abundance of anurans in urban and rural sites, and reported a lower richness of species in the urban areas, with 10 anuran species only present in the rural site and not in the urban site (Menin et al. 2019). A similar pattern was found in western Georgia, USA, when other researchers studied multiple amphibian species in watersheds distributed along different categories of urbanization, with a lower species richness reported for the site with a higher urbanization level (Barret & Guyer, 2008). Other common negative effects reported were a reduction in population size, lower genetic diversity, and mortality events. For example, in North Carolina, USA, the populations of Eurycea cirrigera and Desmognathus fuscus frogs decreased 12% and 9% respectively, from 1972 to 2000, which was associated with the conversion of natural areas into urban areas (Price et al. 2006), In Texas, USA, researchers also found a population decline of the salamander Eurycea tonkawae, which was strongly correlated with an increase in urban area (Bendik et al. 2014). In Quebec and Montreal (Canada), New York (USA), and Melbourne (Australia), four different studies have found a low genetic diversity, including lower allelic richness, in amphibian species like Litoria raniformis, Plethodon cinereus, and Desmognathus fuscus, mostly because of habitat fragmentation caused by urbanization, which tends to isolate amphibian populations (Nöel et al., 2007; Nöel & Lapointe, 2010; Munshi-South et al., 2013; Keely et al., 2015). Finally, several authors have reported mortality events, mostly related to car and bicycle collisions in urban areas. For example, in Indiana, USA, authors 23 conducted surveys of multi-species road-kills in order to identify habitat characteristics associated with road-kills, and found that 95% of the individuals in the study were herpetofauna, with at least eight amphibian species found as road-kill (Glista et al., 2008). In Falconbridge, Australia, researchers surveyed 1.4 km of suburban streets and found that six frog species had high mortality due to collisions in roads, representing 33% of the local frog fauna (Wotherspoon & Burgin, 2011). Similarly, Laurijssens & Stark (2013) found that five amphibian species suffered mortality by collisions with cyclists, in a bikeway in the vicinity of a university area in Leeuwarden, Netherlands. On the other hand, the most common positive effect reported was a high abundance and/or occurrence of amphibians in urban sites. For example, Rana temporaria was found reproducing in most of the Sustainable Drainage Systems (SuDS) surveyed in Inverness, UK, over a period of 3 years, and the authors highlight the ability of SuDS inside the city to support amphibian breeding in these areas, given that they can be suitable habitats for reproduction (O´Brien 2015). In Australia, researchers studied amphibian assemblage structure in five natural and five urban sites with similar characteristics, and found that five out of the six amphibian species studied were only present in the urban site (Lane & Burgin, 2008) which might indicate that these species found benefits from the urban setting. Lane & Burgin (2008) hypothesize that chemicals present in urban contaminated waters might protect those five frog species from diseases such as chitridiomycosis, which can reduce mortality compared to natural sites. Menin et al. (2019) found five amphibian species within their study that were most common in urban areas, as compared to rural areas, in central Amazonia, Brazil, where authors determined the composition and abundance of anurans in urban and rural sites. The second and third most reported positive effects were bigger population size and colonization events, respectively. Mollov (2005) found that Bufo viridis had a larger population in urbanized zones compared to non-urbanized zones, showing a possible benefit from urbanization for this specific frog species. Konowalik et al. (2020) found that five amphibian species had a greater number of colonization events than extinction events during the study period inside urban areas. According to Konowalik et al. (2020), the permanency of ponds, the occurrence of those ponds near river valleys, and a high ratio of green area around ponds are positively correlated with amphibian species richness in the city. Therefore, these characteristics might be helping amphibian species colonize ponds within the urban limits of the city. Many studies also described positive, neutral, and 24 negative effects of urbanization for different amphibian species within the same study (How & Dell, 2000; Ghiurcă & Gherghel, 2008; Pulev & Sakelarieva, 2013; Entiauspe- Neto et al., 2016; Ingle et al., 2019; Konowalik et al., 2020). For example, Ghiurcă & Gherghel (2008) studied the composition and distribution of the herpetofauna in urban and peri-urban areas in Romania, and found that four amphibian species were very common in highly urbanized sites and peri-urban areas, with many individuals present both in artificial and natural ponds, whereas four other amphibian species in the same study were rare. There were few individuals found only in the peri urban sites and not in the areas with a higher concentration of buildings and houses. Entiauspe-Neto et al. (2016) did a fauna inventory of amphibians and reptiles in an urban area with different levels of anthropogenic alteration in Rio Grande do Sul, Brazil, and found that out of 16 amphibian species, eight were present either in sites with low anthropogenic alteration or in sites with high anthropogenic alteration but in low numbers (uncommon in these areas). Other six amphibian species in the same study were only found in sites with no anthropogenic alteration, and two were abundant in sites with higher anthropogenic alteration within the urban site studied. This shows that different amphibian species can respond differently to urbanization, which is why it is important to pay attention to the general trends as well as to species-specific responses. In conclusion, our results showed that the majority of studied amphibian species (avoiders and survivors) inside urban areas suffered negative effects, mostly pertaining to low abundance, richness and smaller population size (Pellet et al., 2004; Price et al., 2006; Miller et al., 2007; Barret & Guyer, 2008; Menin et al., 2019). Conversely, a small group of species (exploiters) obtained benefits from urban sites and became the most common species inside urban areas (Mollov, 2005; Lane & Burguin, 2008; Menin et al., 2019). Notably, the large majority of urban amphibian studies came from the Global North (i.e., rich countries) where the amphibian diversity is lower (Duellman, 1999), and for that reason, our understanding of urban effects in this taxonomic group is biased to that small representation of species. The lack of studies in the Global South, where the majority of amphibian species occur, makes direct comparisons between urban and natural sites difficult in this area. Also the lack of long-term studies in general, which can describe the effects of urbanization over time, compromises our understanding of the general effects of urbanization on amphibians as urbanization progresses. Therefore, our recommendation would be to focus on this type of studies in future research on amphibian urban ecology. In 25 comparison with other taxonomic groups such as birds (Blair, 2001; Marzluff, 2001; Seress & Liker, 2015; Isaksson, 2018) and arthropods (Pawlikowski & Polorniecka, 1990; McIntyre, 2000; Raupp et al., 2010; Bang & Faeth, 2011; Fenoglio et al., 2020), our knowledge about the effect of urban development on amphibians is very limited, which reduces the potential reach of the information to impact informed decisions on their conservation within urban areas and to help decision makers improve urban planning in the future. Future directions for urban amphibian studies Our recommendation is to increase the number of studies of urban amphibian ecology in the Global South. More specifically, we recommend focusing on studies that make direct comparisons between urban and natural environments, so that the effects of urbanization on this group can become more directly evident. Also, it is important to focus on long-term studies in order to better describe the effects and responses of amphibians to urbanization over time. In such long-term studies, in order to make future revision on this subject easier and more standardized, it would be important to describe the study sites thoroughly, place them in an urbanization category (urban, suburban, peri-urban, rural, etc), classify the study species into exploiters, survivors, or avoiders as well as include the reason why the species was classified in a certain category. Also, we recommend clarifying if the matter that is being studied affects the amphibian species in a positive or negative way, to more clearly understand the effects of urbanization on anuran and other amphibian species. References Allik, J., Lauk, K., & Realo, A. (2020). Factors predicting the scientific wealth of nations. Cross- Cultural Research, 54(4), 364-397. Barrett, K., & Guyer, C. (2008). Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA. Biological Conservation, 141(9), 2290-2300. Bang, C., & Faeth, S. H. (2011). Variation in arthropod communities in response to urbanization: seven years of arthropod monitoring in a desert city. Landscape and Urban Planning, 103(3-4), 383-399. 26 Bendik, N. F., Sissel, B. N., Fields, J. R., O’Donnell, L. J., & Sanders, M. S. (2014). Effect of urbanization on abundance of Jollyville Plateau salamanders (Eurycea tonkawae). Herpetological Conservation and Biology, 9(1), 206-222. Biamonte, E., Sandoval, L., Chacón, E., & Barrantes, G. (2011). Effect of urbanization on the avifauna in a tropical metropolitan area. Landscape Ecology, 26(2), 183-194. Blair RB. (2001). Birds and butterflies along urban gradients in two ecoregions of the U.S. Pages 33–56 in Lockwood JL, McKinney ML, eds. Biotic Homogenization. Norwell (MA): Kluwer. Bowles BD, Sanders MS, Hansen RS (2006) Ecology of the Jollyville Plateau salamander (Eurycea tonkawae: Plethodontidae) with an assessment of the potential effects of urbanization. Hydrobiologia 553:111–120. Cimini, G., Gabrielli, A., & Sylos Labini, F. (2014). The scientific competitiveness of nations. PloS one, 9(12), e113470. Chocholoušková, Z., & Pyšek, P. (2003). Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzeň. Flora-Morphology, Distribution, Functional Ecology of Plants, 198(5), 366-376. Duellman, W. E. (1999). Global distribution of amphibians: patterns, conservation, and future challenges (pp. 1-30). Johns Hopkins University Press, Baltimore, MD, USA. Entiauspe-Neto, O., Perleberg, T., & de Freitas, M. A. (2016). Herpetofauna from an urban Pampa fragment in southern Brazil: composition, structure and conservation. Check List, 12, 1.Erz, W. (1966). Ecological principles in the urbanization of birds. Ostrich, 37(sup1), 357-363. Fenoglio, M. S., Rossetti, M. R., & Videla, M. (2020). Negative effects of urbanization on terrestrial arthropod communities: a meta‐analysis. Global Ecology and Biogeography, 29(8), 1412-1429. Germaine S.S., Wakeling B. F. ( 2001). Lizard species distributors and habitat occupation along an urban gradient in Tucson, Arizona, USA. Biological Conservation 97: 229–237. Ghiurcă, D. & Gherghel, I. (2008). Aspects concerning the herpetofauna in the city of Bacău (România): urban and peri-urban environments. Herpetologica, 2, 13-19. 27 Glista, D. J., DeVault, T. L., & DeWoody, J. A. (2008). Vertebrate road mortality predominantly impacts amphibians. Herpetological conservation and Biology, 3(1), 77-87. Hay, W. P. (1902). A list of the batrachians and reptiles of the District of Columbia and vicinity. Proceedings of the Biological Society of Washington 15: 121-145. How, R. A., & Dell, J. (2000). Ground vertebrate fauna of Perth's vegetation remnants: impact of 170 years of urbanization. Pacific Conservation Biology, 6(3), 198-217. Ingle, M., Yadav, U., Bhilala, A. K., & Pawar, M. (2019). Urban Herpetofauna: A Case Study in Ujjain City of Central India. Int. J. Sci. Res. in Biological Sciences Vol, 6, 5. Isaksson, C. (2018). Impact of urbanization on birds. Bird Species, 235, 257. Joyce, AT. (2006). Land use change in Costa Rica: 1996–2006, as influenced by social, economic, political, and environmental factors. Litografía e imprenta LIL, S.A., San José, Costa Rica. Karlsson, S., Srebotnjak, T., & Gonzales, P. (2007). Understanding the North–South knowledge divide and its implications for policy: a quantitative analysis of the generation of scientific knowledge in the environmental sciences. Environmental Science & Policy, 10(7-8), 668- 684. Keely, C. C., Hale, J. M., Heard, G. W., Parris, K. M., Sumner, J., Hamer, A. J., and Melville, J. (2015). Genetic structure and diversity of the endangered growling grass frog in a rapidly urbanizing region. Royal Society Open Science 2, 140255. doi:10.1098/RSOS.140255 King, S. A., & Buckney, R. T. (2000). Urbanization and exotic plants in northern Sydney streams. Austral Ecology, 25(5), 455-461. Konowalik, A., Najbar, A., Konowalik, K., Dylewski, Ł., Frydlewicz, M., Kisiel, P., Starzecka, A., Zaleśna, A & Kolenda, K. (2020). Amphibians in an urban environment: a case study from a central European city (Wrocław, Poland). Urban Ecosystems, 23(2), 235-243. Lane, A. and Burgin, S. (2008). Comparison of frog assemblage structure between urban and non- urban habitats in the upper Blue Mountains (Australia). Freshwater Biology 53: 2484- 2493. 28 Laurijssens, C., & Stark, T. (2013). Urban Amphibians and the Challenges they Face: Connectivity of a Small Community of Amphibians During Spring Migration in Leeuwarden, the Netherlands. FrogLog, 30. Mackin-Rogalska R, Pinowski J, SolonJ,Wojcik Z. (1988). Changes in vegetation, avifauna, and small mammals in a suburban habitat. PolishEcologicalStudies 14: 293–330. Martínez-Solano, I., & García-París, M. (2001). Distribución y estado de conservación de Alytesobstetricans y Pelodytespunctatus en el Sureste de Madrid. Boletín de la Asociación Herpetológica Española, 12(1), 37-41. Marzluff, J. M. (2001). Worldwide urbanization and its effects on birds. In Avian ecology and conservation in an urbanizing world (pp. 19-47). Springer, Boston, MA. Marzluff JM, Bowman R, Donnelly R. (2001). A historical perspective on urban bird research: trends, terms, and approaches. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer Academic Publishers, Norwell, pp 1–17 McIntyre NE. (2000). Ecology of urban arthropods: A review and a call to action. Annals of the Entomological Society of America 93: 825–835. McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience, 52(10), 883-890. Medley, K. E., McDonnell, M. J., & Pickett, S. T. (1995). Forest-landscape structure along an urban-to-rural gradient. The Professional Geographer, 47(2), 159-168. Menin, M., Ferreira, R. F. B., Melo, I. B., Gordo, M., Hattori, G. Y., & SANT’ANNA, B. S. (2019). Anuran diversity in urban and rural zones of the Itacoatiara municipality, central Amazonia, Brazil. Acta Amazonica, 49(2), 122-130. Miller, J., G. Hess, and C. Moorman. (2007). Southern two-lined salamanders in urbanizing watersheds. Urban Ecosystems 10:73–85. Mitchell, J. C., & Brown, R. J. (2008). Urban herpetology: global overview, synthesis, and future directions. Herpetological Conservation, 3, 1-30. 29 Mitchell, J. C., Jung Brown, R. E., & Bartholomew, B. (Eds).(2008). Urban herpetology. Herpetological conservation, 3, 130 Naiman. Mollov, I. (2005). A study on the amphibians (Amphibia) and reptiles (Reptilia) in three urban protected areas in the town of Plovdiv (South Bulgaria). Scientific Studies of the University of Plovdiv-Biology, Animalia, 41, 79-94. Munshi-South, J., Zak, Y., & Pehek, E. (2013). Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City. PeerJ, 1, e64. Noël S, Ouellet M, Galois P, Lapointe F.J. (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8(3):599–606. Noël, S., & Lapointe, F. J. (2010). Urban conservation genetics: study of a terrestrial salamander in the city. Biological Conservation, 143(11), 2823-2831. Nuhn TP, Wright CG. (1979). An ecological survey of ants in a landscaped suburban habitat. American Midland Naturalist 102: 353–362. O’Brien, C. D. (2015). Sustainable drainage system (SuDS) ponds in Inverness, UK and the favourable conservation status of amphibians. Urban ecosystems, 18(1), 321-331. Orser, P.N., Shure, D.J.(1972). Effects of urbanization on the salamander Desmognathus fuscus fuscus. Ecology 53, 1148–1154. Pawlikowski T., Pokorniecka J. (1990). Observations on the structure of bumblebee communities of the town-forest areas in Torun Basin, North Poland. ActaUniversitatis Nicolai CoperniciBiologia37: 3–22. Pellet J., Guisan A. & Perrin N. (2004). A concentric analysis of the impact of urbanization on the threatened European Tree Frog in an agricultural landscape. Conservation Biology 18: 1599–1606. Pickett, S. T., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., &Costanza, R. (2001). Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual review of ecology and systematics, 32(1), 127-157. 30 Price, S. J., Dorcas, M. E., Gallant, A. L., Klaver, R. W., &Willson, J. D. (2006). Three decades of urbanization: estimating the impact of land-cover change on stream salamander populations. BiologicalConservation, 133(4), 436-441. Programa Estado de la Nación en Desarrollo Humano Sostenible. (2018). Informe estado de la nación 2018 / PEN-CONARE. - San José, C.R.: Servicios Gráficos AC. Pulev, A., & Sakelarieva, L. (2013). Herpetofauna in the city of Blagoevgrad, south-western Bulgaria. BioDiscovery, 7, e8943. Pysek, P. (1989). On the richness of Central European urban flora. Preslia, 61(4), 329. Raupp, M. J., Shrewsbury, P. M., & Herms, D. A. (2010). Ecology of herbivorous arthropods in urban landscapes. Annual review of entomology, 55, 19-38. Rodríguez-Navarro, A., & Brito, R. (2022). The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy. Scientometrics, 1-26. Rosen, C. (Ed.). (2000). World Resources 2000-2001: People and ecosystems: The fraying web of life. Elsevier. Rubbo MJ, Kiesecker JM (2005) Amphibian breeding distribution in an urbanized landscape. Conserv Biol 19: 504–511 Seress, G., & Liker, A. (2015). Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae, 61(4), 373-408. Stein, B. A., Kutner, L. S., & Adams, J. S. (Eds.). (2000). Precious heritage: the status of biodiversity in the United States. Oxford University Press on Demand. United Nations, Department of Economic and Social Affairs, Population Division (2019). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations. United Nations, Department for Economic and Social Affairs (2020). World Economic Situation and Prospects. New York: United Nations. Wittig, R. (2004). The origin and development of the urban flora of Central Europe. Urban ecosystems, 7(4), 323-329. 31 Wotherspoon, D., & Burgin, S. (2011). The impact on native herpetofauna due to traffic collision at the interface between a suburban area and the Greater Blue Mountains World Heritage Area: an ecological disaster. Australian Zoologist, 35(4), 1040-1046. 32 Tables and figures Figure 1. Percentage of urban effect studies on amphibians per country or region prior to November 2020 (n =104). Country P er ce n ta ge o f st u d ie s (% ) 0 5 10 15 20 25 30 35 40 U n it ed S ta te s A u st ra lia B ra zi l R o m an ia C an ad a B u lg ar y In d ia H u n ga ry P o la n d U n it ed K in gd o m Sp ai n R u si a Ja p an M ya n m ar It al y M ad ag as ca r N et h er la n d s V ie tn am So u th af ri ca Sl o va ki a P o rt u ga l U kr ai n e Sw ed en A rg en ti n a Sw it ze rl an d G er m an y M ex ic o C o st a R ic a W es t In d ie s 33 Figure 2. Percentage of urban effect studies per geographic region prior to November 2020 (n = 104). P er ce n ta ge o f st u d ie s (% ) Geographic region 0 5 10 15 20 25 30 35 40 45 34 Figure 3. Percentage of studies including amphibians in urban areas, separated by effect category of urbanization on amphibian species. Percentages add up to more than 100% because some studies reported more than one effect in the same publication, for example, a positive effect for one species but a negative effect for another species. P er ce n ta ge o f st u d ie s (% ) Effect category 0 10 20 30 40 50 60 70 80 Negative Neutral Positive 35 Figure 4. Number of studies with negative, neutral and positive effects for each species category. N u m b er o f st u d ie s Species category 0 5 10 15 20 25 30 35 40 45 Avoiders Survivors Exploiters N/A Negative Neutral Positive 36 Figure 5. Number of studies reporting each type of negative effect category, separated by species category (avoiders, survivors, exploiters, and N/A). 0 5 10 15 20 25 30 35 40 Abundance and/or occurence Genetic variability Population size Species richness Local extintion Mortality reproduction Physiological damage Avoiders Survivors Exploiters N/A N u m b er o f st u d ie s Negative effect 37 Figure 6. Number of studies reporting each type of possitive effect category, separated by species category (i.e. avoiders, survivors, exploiters, and N/A). 0 5 10 15 20 25 Abundance/ occurence Colonization Population size Species richness Less diseases Survival Avoiders Surviviors Exploiters N/A N u m b er o f st u d ie s Possitive effect 38 Appendix 1 List of studies included in the present review, found by searching the terms: “Urban herpetofauna”, “Urban amphibians”, “cities” AND “herpetofauna”, “cities” AND “amphibians”, “cities” AND “frogs”, “cities” AND “salamanders”, “cities” AND “newts”, “cities” AND “caecilians”. The studies included in the analysis needed to report the occurrence of amphibians in urban environments (presence, abundance, or compare between urban or another habitats) or report the effects of urbanization on amphibian morphology, behavior, survival, diet, or evolution. Studies that analyze the effect of anthropogenic pollutants in laboratories or experimentally inside cities were excluded, as well as reports of amphibians’ deaths in roads, if roads were outside of cities or did not compare city roads versus rural, or natural roads or a gradient of road density as a measure for urbanization. Akulenko, N. M., Dziubenko, N. V., Marushchak, O. Y., Nekrasova, O. D., & Oskyrko, O. S. (2019). Histological Changes in Common Toad, Bufo Bufo (Anura, Bufonidae), Liver Tissue Under Conditions of Anthropogenically Transformed Ecosystems. Vestnik Zoologii, 53(6), 501-506. Anderson, K. (2013). Influences Of Ecological Light Pollution On Advertisement Calls Of Spea Multiplicata (Amphibia: Anura: Scaphiopodidae) In Rural And Urban Populations In The Northern Chihuahuan Desert And An Evaluation Of Hybrid S. Bombifrons X S. Multiplicata Calls. Ascoli‐Morrete, T., Signor, E., Santos‐Pereira, M., & Zanella, N. (2019). Morphological abnormalities in anurans from southern Brazil. Austral Ecology, 44(6), 1025-1029. Barrett K, Samoray ST, Helms BS, Guyer C (2012) Southern twolined salamander diets in urban and forested streams in western Georgia. Southeastern Naturalist 11: 287–296. Barrett, K. (2009). Stream-breeding amphibian responses to land use distrubances (Doctoral dissertation). Barrett, K., & Guyer, C. (2008). Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA. Biological Conservation, 141(9), 2290-2300. Bendik, N. F., Sissel, B. N., Fields, J. R., O’Donnell, L. 39 J., & Sanders, M. S. (2014). Effect of urbanization on abundance of Jollyville Plateau salamanders (Eurycea tonkawae). Herpetological Conservation and Biology, 9(1), 206- 222. Boiarski, D. R., Toigo, C. M., Sobjak, T. M., Santos, A. F. P., Romão, S., & Guimarães, A. T. B. (2020). Assessment of antioxidant system, cholinesterase activity and histopathology in Lithobates catesbeianus tadpoles exposed to water from an urban stream. Ecotoxicology, 29(3), 314-326. Bókony, V., Üveges, B., Ujhegyi, N., Verebélyi, V., Nemesházi, E., Csíkvári, O., & Hettyey, A. (2018). Endocrine disruptors in breeding ponds and reproductive health of toads in agricultural, urban and natural landscapes. Science of the Total Environment, 634, 1335- 1345. Bókony, V., Üveges, B., Verebélyi, V., Ujhegyi, N., & Móricz, Á. M. (2019). Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Scientific reports, 9(1), 1-8. Bowles BD, Sanders MS, Hansen RS (2006) Ecology of the Jollyville Plateau salamander (Eurycea tonkawae: Plethodontidae) with an assessment of the potential effects of urbanization. Hydrobiologia 553:111–120. Calderon, M. R., Almeida, C. A., González, P., & Jofré, M. B. (2019). Influence of water quality and habitat conditions on amphibian community metrics in rivers affected by urban activity. Urban Ecosystems, 22(4), 743-755. Ceríaco, L. M. (2012). Human attitudes towards herpetofauna: The influence of folklore and negative values on the conservation of amphibians and reptiles in Portugal. Journal of Ethnobiology and Ethnomedicine, 8(1), 1-13. Clark, P. J., Reed, J. M., Tavernia, B. G., Windmiller, B. S., & Regosin, J. V. (2008). Urbanization effects on spotted salamander and wood frog presence and abundance. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Salt Lake City, UT, 67-75. Bodin, A. A., Ferenti, S., Ianc, R & Covaciu-Marcov, S. D. (2013). Some data upon the herpetofauna and terrestrial isopods from Beiuş town, Romania. South Western Journal of Horticulture, Biology and Environment 4(2), 137-149. 40 Dawson, D. E., & Hostetler, M. E. (2008). Herpetofaunal use of edge and interior habitats in urban forest remnants. Urban habitats, 5(1), 103-125. Entiauspe-Neto, O., Perleberg, T., & de Freitas, M. A. (2016). Herpetofauna from an urban Pampa fragment in southern Brazil: composition, structure and conservation. Check List, 12, 1. Foster, B. J., Sparks, D. W., & Duchamp, J. E. (2004, January). Urban herpetology II: amphibians and reptiles of the Indianapolis airport conservation lands. In Proceedings of the Indiana Academy of Science (Vol. 113, No. 1, pp. 53-59). Gabor, C. R., Davis, D. R., Kim, D. S., Zabierek, K. C. & Bendik, N. F. (2018).Urbanization is associated with elevated corticosterone in Jollyville Plateau salamanders. Ecol. Indic. 85, 229–235 Gagne SA, Fahrig L (2010) Effects of time since urbanization on anuran community composition in remnant urban ponds. Environ Conserv 37(2):128–135. Garcia-Gonzalez, C., Campo, D., Pola, I. G., & Garcia-Vazquez, E. (2012). Rural road networks as barriers to gene flow for amphibians: Species-dependent mitigation by traffic calming. Landscape and Urban Planning, 104(2), 171-180. Gardner, C., & Jasper, L. (2009). The urban herpetofauna of Toliara, southwest Madagascar. Herpetology Notes, 2(1), 239-42. Ghiurcă, D., & Gherghel, I. (2008). Aspects concerning the herpetofauna in the city of Bacău (România): urban and peri-urban environments. Herpetologica, 2, 13-19. Glista, D. J., DeVault, T. L., & DeWoody, J. A. (2008). Vertebrate road mortality predominantly impacts amphibians. Herpetological conservation and Biology, 3(1), 77-87. Gutiérrez-Vannucchi, A. C., Rodríguez-Umaña, P., Sandoval, L., & García-Rodríguez, A. (2019). Variación en la actividad acústica de Hyalinobatrachium fleischmanni (Anura: Centrolenidae) en un ambiente urbano con diferentes niveles de ruido antropogénico. Revista de Biología Tropical, 67(2), 249-258. Hamer AJ, Organ AK (2008) Aspects of the ecology and conservation of the Growling Grass Frog Litoria raniformis in an urban-fringe environment, southern Victoria. Austral Zool 34(3):393–407. 41 Hamer AJ, Parris KM (2011) Local and landscape determinants of amphibian communities in urban ponds. Ecol Appl 21(2):378–390. Herczeg D, Gallé R, Molnár N (2012) Effects of urbanization on the occurence of Anura assemblages in the city of Szeged (Hungary). Tiscia 39:3–8. Hill, J. E., Lawson, K. M., & Tuckett, Q. M. (2017). First record of a reproducing population of the African clawed frog Xenopus laevis Daudin, 1802 in Florida (USA). BioInvasions Record, 6(1). Hodgkison, S. C., Hero, J. M., & Warnken, J. (2007). The conservation value of suburban golf courses in a rapidly urbanising region of Australia. Landscape and urban planning, 79(3-4), 323-337. Holtmann L, Philipp K, Becke C, Fartmann T (2017) Effects of habita and landscape quality on amphibian assemblages of urbanstormwater ponds. Urban Ecosyst 20:1249–1259. https://doi.org/10.1007/s11252-017-0677-y. Holzer, K. A. (2014). ‘Amphibian Use of Constructed and Remnant Wetlands in an Urban Landscape’, Urban Ecosystems, 17: 955–68. Holzer, K. A., Bayers, R. P., Nguyen, T. T., & Lawler, S. P. (2017). Habitat value of cities and rice paddies for amphibians in rapidly urbanizing Vietnam. Journal of Urban Ecology, 3(1). Homan, R. N., Windmiller, B. S., & Reed, J. M. (2004). Critical thresholds associated with habitat loss for two vernal pool‐breeding amphibians. Ecological Applications, 14(5), 1547-1553. Homola, J. J., Loftin, C. S., Cammen, K. M., Helbing, C. C., Birol, I., Schultz, T. F., & Kinnison, M. T. (2019). Replicated landscape genomics identifies evidence of local adaptation to urbanization in wood frogs. Journal of Heredity, 110(6), 707-719. How, R. A. (1998). Long-term sampling of a herpetofaunal assemblage on an isolated urban bushland remnant, Bold Park, Perth. Journal of the Royal Society of Western Australia, 81, 143. How, R. A., & Dell, J. (2000). Ground vertebrate fauna of Perth's vegetation remnants: impact of 170 years of urbanization. Pacific Conservation Biology, 6(3), 198-217. 42 Htay, H., & Phyoe, K. S. S. (2019). Assessment of conservation on herpetofauna species inhabited in some villages of Inle lake. Iglesias-Carrasco, M., Martín, J., & Cabido, C. (2017). Urban habitats can affect body size and body condition but not immune response in amphibians. Urban Ecosystems, 20(6), 1331- 1338. Ingle, M., Yadav, U., Bhilala, A. K., & Pawar, M. (2019). Urban Herpetofauna: A Case Study in Ujjain City of Central India. Int. J. Sci. Res. in Biological Sciences Vol, 6, 5. Johnson PT, McKensize VJ, Peterson AC, Kerby JL, Brown J, Blaustein AR, Jackson T (2011) Regional decline of an iconic amphibian associated with elevation, land-use change, and invasive species. Conserv Biol 25(3): 556–566. Kärvemo, S., Laurila, A., & Höglund, J. (2019). Urban environment and reservoir host species are associated with Batrachochytrium dendrobatidis infection prevalence in the common toad. Diseases of aquatic organisms, 134(1), 33-42. Keely, C. C., Hale, J. M., Heard, G. W., Parris, K. M., Sumner, J., Hamer, A. J., and Melville, J. (2015). Genetic structure and diversity of the endangered growling grass frog in a rapidly urbanizing region. Royal Society Open Science 2, 140255. doi:10.1098/RSOS.140255. Knuston, M.G., Sauer, J.R., Olsen, D.A., Mossman, M.J., Hemesath, L.M., Lannoo, M.J., (1999). Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA. Conservation Biology 13, 1437–1446. Konowalik, A., Najbar, A., Konowalik, K., Dylewski, Ł., Frydlewicz, M., Kisiel, P., Starzecka, A., Zalesna, A. & Kolenda, K. (2020). Amphibians in an urban environment: a case study from a central European city (Wrocław, Poland). Urban Ecosystems, 23(2), 235-243. Kovács, É.-H. and Sas, I. (2010). Aspects of breeding activity of Bufo viridis in an urban habitat: a case study in Oradea, Romania. Biharean Biologist 4 (1): 73-77. Kruger, D. J., Hamer, A. J., & Du Preez, L. H. (2015). Urbanization affects frog communities at multiple scales in a rapidly developing African city. Urban Ecosystems, 18(4), 1333-1352. Lane, A. and Burgin, S. (2008). Comparison of frog assemblage structure between urban and non- urban habitats in the upper Blue Mountains (Australia). Freshwater Biology 53: 2484- 2493. 43 Laurijssens, C., & Stark, T. (2013). Urban Amphibians and the Challenges they Face: Connectivity of a Small Community of Amphibians During Spring Migration in Leeuwarden, the Netherlands. FrogLog, 30. Lind, A.J. (2008). Herpetofauna in the urban streams of Arcata, California, USA: the role of city planning and adjacent land uses. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Salt Lake City, UT, 505-507. MacGregor-Fors I, Ordoñez OH, Ortega-Álvarez R (2013) Urban croaking: diversity and distribution of anurans in a neotropical city. Urban Ecosystems 16(2): 389–396. Macklem, D. C., Helton, A. M., Tingley, M. W., Dickson, J. M., & Rittenhouse, T. A. (2020). Stream salamander persistence influenced by the interaction between exurban housing age and development. Urban Ecosystems, 23(1), 117-132. Melo, Í. V., Moura, G. J. B., Freitas, M. A. D., Andrade, E. V. E., Casal, C., Abegg, A. D., & Kokubum, M. N. C. (2018). New additions to the herpetofauna of the Dois Irmãos State Park, an urban Atlantic Rainforest fragment in northeastern Brazil. Herpetology Notes, 11, 245-254. Melville, J. (2018). Conservation genetics of eastern Australian herpetofauna in a rapidly changing landscape: a perspective on conservation management and policy implementation. Pacific Conservation Biology, 24(3), 310-317. Menin, M., Ferreira, R. F. B., Melo, I. B., Gordo, M., Hattori, G. Y., & Sant’Anna, B. S. (2019). Anuran diversity in urban and rural zones of the Itacoatiara municipality, central Amazonia, Brazil. Acta Amazonica, 49(2), 122-130. Meshaka Jr, W. E. (1999). The herpetofauna of the Doc Thomas house in South Miami, Florida. Florida Field Naturalist, 27(3), 121-123. Mifsud, D.A., & Mifsud, R. (2008). Golf courses as refugia for herpetofauna in an urban river floodplain. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Salt Lake City, UT, 303- 310. Miller, J., G. Hess, and C. Moorman. (2007). Southern two-lined salamanders in urbanizing watersheds. Urban Ecosystems 10:73–85. 44 Mitchell, B. A., Callaghan, C. T., & Rowley, J. J. (2020). Continental-scale citizen science data reveal no changes in acoustic responses of a widespread tree frog to an urbanisation gradient. Journal of Urban Ecology, 6(1). Mollov I. (2005). A study of the influence of the automobile transport on the amphibians in urban environment. Proceedings of Student Scientific Conference “Biodiversity conservation and protected territories management”, BBF, Sofia University “St. Kliment Ohridski”; 82-88. Mollov, I. (2005). A study on the amphibians (Amphibia) and reptiles (Reptilia) in three urban protected areas in the town of Plovdiv (South Bulgaria). Scientific Studies of the University of Plovdiv-Biology, Animalia, 41, 79-94. Mollov, I. A. (2011). Habitat distribution of the amphibians and reptiles in the city of Plovdiv, Bulgaria. Biharean Biologist, 5(1), 25-31. Munshi-South, J., Zak, Y., & Pehek, E. (2013). Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City. PeerJ, 1, e64. Murphy MO, Agha M, Maigret TA et al (2016a) The effects of urbanization on body size of larval stream salamanders. Urban Ecosyst 19: 275–286. doi:10.1007/s11252-015-0486-0. Neill, W. T. (1950). Reptiles and amphibians in urban areas of Georgia. Herpetologica, 6(5), 113- 116. Nöel S, Ouellet M, Galois P, Lapointe F-J (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8(3):599–606. Noël, S., & Lapointe, F. J. (2010). Urban conservation genetics: study of a terrestrial salamander in the city. Biological Conservation, 143(11), 2823-2831. O’Brien, C. D. (2015). Sustainable drainage system (SuDS) ponds in Inverness, UK and the favourable conservation status of amphibians. Urban ecosystems, 18(1), 321-331. O'Brien, D., Hall, J., Miro, A., Rae, M., & Jehle, R. (2018). SuDS and amphibians-are constructed wetlands really benefitting nature and people?. The Glasgow Naturalist, 27(Supl.). Okamiya, H., & Kusano, T. (2018). Lower genetic diversity and hatchability in amphibian populations isolated by urbanization. Population Ecology, 60, 347–360. 45 Okamiya, H., & Kusano, T. (2019). Effects of landscape features on gene flow among urban frog populations. Ecological Research, 34(4), 497-508. Orser, P.N., Shure, D.J., (1972). Effects of urbanization on the salamander Desmognathus fuscus fuscus. Ecology 53, 1148–1154. Ostergaard, E. C., Richter, K. O., & West, S. D. (2008). Amphibian use of stormwater ponds in the Puget Lowlands of Washington, USA. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Salt Lake City, UT, 259-270. Parris, K. M. (2006). Urban amphibian assemblages as metacommunities. Journal of Animal Ecology, 75(3), 757-764. Parris, K. M., Velik-Lord, M., & North, J. M. (2009). Frogs call at a higher pitch in traffic noise. Ecology and Society, 14(1). Pellet J., Guisan A. & Perrin N. (2004). A concentric analysis of the impact of urbanization on the threatened European Tree Frog in an agricultural landscape. Conservation Biology 18: 1599–1606. Pillsbury FC, Miller JR. (2008). Habitat and landscape characteristics underlying anuran community structure along an urban–rural gradient. Ecol Appl 18:1107–1118. Powell, R., & Henderson, R. W. (2008). Urban herpetology in the West Indies. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Salt Lake City, UT, 389-404. Price, S. J., Cecala, K. K., Browne, R. A., & Dorcas, M. E. (2011). Effects of urbanization on occupancy of stream salamanders. Conservation Biology, 25(3), 547-555. Price, S. J., Browne, R. A. & Dorcas, M. E. (2012). Evaluating the effects of urbanisation on salamander abundances using a before-after control-impact design. Freshwater Biology 57:193–203. Price, S.J., Dorcas, M.E., Gallant, A.L., Klaver, R.W., Willson, J.D., (2006). Three decades of urbanization: estimating the impact of land-cover change on stream salamander populations. Biological Conservation 133, 436–441. Prokop, P., & Fančovičová, J. (2012). Tolerance of amphibians in Slovakian people: A comparison of pond owners and non-owners. Anthrozoös, 25(3), 277-288. 46 Pulev, A., & Sakelarieva, L. (2013). Herpetofauna in the city of Blagoevgrad, south-western Bulgaria. BioDiscovery, 7, e8943. Purkayastha, J., Das, M., & Sengupta, S. (2011). Urban herpetofauna: a case study in Guwahati City of Assam, India. Herpetology notes, 4(1), 195-202. Ramesh, T., Hussain, K. J., Satpathy, K. K., & Selvanayagam, M. (2013). Community composition and distribution of herpetofauna at Kalpakkam Nuclear campus, Southern India. Herpetology Notes, 6, 343-351. Riley, S. P., Busteed, G. T., Kats, L. B., Vandergon, T. L., Lee, L. F., Dagit, R. G., Kerbi, J. L., Fisher, R. N. & Sauvajot, R. M. (2005). Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conservation Biology, 19(6), 1894-1907. Rubbo MJ, Kiesecker JM (2005) Amphibian breeding distribution in an urbanized landscape. Conserv Biol 19: 504–511. Saenz D, Hall TL, Kwiatkowski MA (2015) Effects of urbanization on the occurrence of Batrachochytrium dendrobatidis: Do urban environments provide refuge from the amphibian chytrid fungus? Urban Ecosyst 18: 333−340. Santana, D. J., Ferreira, V. G., Crestani, G. N., & Neves, M. O. (2019). Diet of the Rufous Frog Leptodactylus fuscus (Anura, Leptodactylidae) from two contrasting environments. Herpetozoa, 32, 1. Santana, G. G., Vieira, W. L., Pereira-Filho, G. A., Delfim, F. R., Lima, Y. C., & Vieira, K. S. (2008). Herpetofauna em um fragmento de Floresta Atlântica no estado da Paraíba, Região Nordeste do Brasil. Biotemas, 21(1), 75-84. Scheffers, B. R., & Paszkowski, C. A. (2016). Large body size for metamorphic wood frogs in urban stormwater wetlands. Urban ecosystems, 19(1), 347-359. Sievers, M., Hale, R., Swearer, S. E., & Parris, K. M. (2019). Frog occupancy of polluted wetlands in urban landscapes. Conservation Biology, 33(2), 389-402. Simon, J. A., Snodgrass, J. W., Casey, R. E., & Sparling, D. W. (2009). Spatial correlates of amphibian use of constructed wetlands in an urban landscape. Landscape Ecology, 24(3), 361-373. 47 Smallbone, L. T., Luck, G. W., & Wassens, S. (2011). Anuran species in urban landscapes: Relationships with biophysical, built environment and socio-economic factors. Landscape and Urban Planning, 101(1), 43-51. Southerland MT, Stranko SA (2008) Fragmentation of riparian amphibian distributions by urban sprawl in Maryland, USA. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Salt Lake City, UT, 423–433. Strugariu, A., Gherghel, I., Huţuleac-Volosciuc, M. V., & Puşcaşu, C. M. (2007). Preliminary aspects concerning the herpetofauna from urban and peri-urban environments from North- Eastern Romania: A case study in the city of Suceava. Herpetologica Romanica, 1, 53-61. Surasinghe, T. D., & Baldwin, R. F. (2015). Importance of riparian forest buffers in conservation of stream biodiversity: responses to land uses by stream-associated salamanders across two southeastern temperate ecoregions. Journal of Herpetology, 49(1), 83-94. Sutherland, R. W., Dunning, P. R. and Baker, W. M. (2010). Amphibian encounter rates on roads with different amounts of traffic and urbanization. Conservation Biology 24: 1626–1635. Tomalka-Sadownik, A., & Rozenblut-Kościsty, B. (2010). Amphibians of the city of Wałbrzych. Fragmenta faunistica, 53(2), 117-127. Van Rooy, P. T., & Stumpel, A. H. (1995). Ecological impact of economic development on Sardinian herpetofauna. Conservation Biology, 9(2), 263-269. Vershinin, V. L., Trofimov, A. G., Perekhrest, E. V., & Berzin, D. L. (2019). Ossification Variability in the Cranial Skeleton of Lissotriton vulgaris (L.)(Caudata) from Urbanization Areas. Inland Water Biology, 12(1), 26-30. Vershinin, V.L., Vershinina, S.D., Berzin, D.L., et al., Long-term observation of amphibian populations inhabiting urban and forested areas in Yekaterinburg, Russia, Scientific Data, (2015), pp. 1–13. White, A. W., & Burgin, S. (2004). Current status and future prospects of reptiles and frogs in Sydney's urban-impacted bushland reserves. Australian Zoologist. Royal Zoological Society of New South Wales. 48 Wotherspoon, D., & Burgin, S. (2011). The impact on native herpetofauna due to traffic collision at the interface between a suburban area and the Greater Blue Mountains World Heritage Area: an ecological disaster. Australian Zoologist, 35(4), 1040-1046. 49 Capítulo 2. Effects of anthropogenic noise on the acoustic characteristics of a glass frog call in urban conditions 50 Abstract. Many animal groups use acoustic communication as their main form of communication for social interactions. Characteristics of the environment influence the way animals communicate acoustically. Anthropogenic noise is a new feature of the environment within urban areas that can make acoustic communication more difficult because it can overlap with animal vocalizations, producing acoustic masking. Multiple strategies have been used by different animals groups to avoid acoustic masking, but our understanding of acoustic plasticity in amphibians is limited compared to other animal groups. Therefore, our objective was to describe how the Fleischmann’s Glass Frog Hyalinobatrachium fleischmanni males avoid the effects of anthropogenic noise on the spectral characteristics of its advertisement calls. We selected two sites with different degrees of urban development. We recorded 56 calling males in total, measured 7 acoustic characteristics for each male, and related them to anthropogenic chronic and instantaneousaneous noise levels at each site. The urban site had a higher chronic noise level than the rural site. When related to chronic noise, both call duration and time between calls were longer in the urban site and the call duration and time between calls decreased as the chronic noise increased. Minimum frequency and frequency of maximum amplitude were higher at the urban site. Regarding instantaneousaneous noise, time between calls decreased when instantaneousaneous noise increased but the rest of the acoustic characteristics did not vary. We found that chronic and instantaneousaneous noise affect the acoustic characteristics of Fleischmann’s Glass Frog calls differently, and apparently for this species the chronic noise levels have more of an effect on the structure of calls. Key words: urbanization, anuran, amphibian, Hyalinobatrachium fleischmanni, bioacustic, vocalization Acoustic communication represents one of the main forms of communication in many groups of animals such as birds, mammals, amphibians, and reptiles (Ryan, 2001; Bradbury & Vehrencamp, 1998), and it is used in social interactions such as courtship, copulation, territory defense, or agoni