water Review Flood Risk-Related Research Trends in Latin America and the Caribbean Juan Pinos 1,* and Adolfo Quesada-Román 2 1 Surface Hydrology and Erosion Group, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain 2 Escuela de Geografía, Universidad de Costa Rica, Saint Joseph 11501-2060, Costa Rica; adolfo.quesadaroman@ucr.ac.cr * Correspondence: juan.pinos@idaea.csic.es Abstract: Latin America and the Caribbean (LAC), like many other regions in the world, are areas that are prone to hydrometeorological disasters, which threaten livelihoods and cause economic losses. To derive LAC’s status in the field of flood risk-related research, we conducted a bibliometric analysis of the region’s publication record using the Web of Science journal database (WoS). After analysing a total of 1887 references according to inclusion-exclusion criteria, 302 articles published in the last 20 years were selected. The research articles published in the period 2000–2020 revealed that Mexico, Brazil, and certain South American countries such as Chile, Peru, and Argentina are more productive in flood risk research. Scientific research is increasing, and most of the available studies focus on lowland areas. The frequently-used keywords are generic, and there is often verbatim copying from the title of the article, which shows the poor coherence between the title, abstract, and keywords. This limited diversification of keywords is of little use in bibliometric studies, reducing their visibility and negatively impacting the citation count level. LAC flood studies are mainly related to hydrometeorological assessments, flood risk analyses, geomorphological and ecosystem studies, flood vulnerability and resilience approaches, and statistical and geographic information science  evaluations. This systematic review reveals that although flood risk research has been important in  the last two decades, future research linked with future climatic scenarios is key to the development Citation: Pinos, J.; Quesada-Román, of realistic solutions to disaster risks. A. Flood Risk-Related Research Trends in Latin America and the Caribbean. Water 2022, 14, 10. Keywords: floods; research publications; scientometrics; bibliometric analysis; research integration; https://doi.org/10.3390/w14010010 research trends; content analysis; statistics; risk management Academic Editor: Renato Morbidelli Received: 17 November 2021 1. Introduction Accepted: 20 December 2021 Floods (pluvial, fluvial, or coastal) are the response of river basins to heavy rainstorms Published: 22 December 2021 normally accompanied by a range of devastations, with economic, social, ecological, and Publisher’s Note: MDPI stays neutral environmental impact. Flood damage worldwide has increased considerably in recent with regard to jurisdictional claims in decades, mainly due to the steady growth of populations and economic activities in flood- published maps and institutional affil- prone areas [1]. These extreme events affect not only the local population but also the land’s iations. infrastructure and its geomorphology. Several studies focusing on direct flood losses and population risk on a global scale for different levels of warming indicate that flooding will increase in intensity and frequency worldwide [2–5]. It is expected that flood consequences in Latin America and the Caribbean (hereafter named LAC) will be more intense due to the Copyright: © 2021 by the authors. exponential, unregulated urbanization of the floodplains, catchment degradation caused Licensee MDPI, Basel, Switzerland. by anthropogenic activity, lack of preparedness and resilience for emergency response, the This article is an open access article persistence of poverty, inefficient public policies, and infrastructural problems [6]. distributed under the terms and An additional disadvantage for LAC is El Niño and La Niña that, together with the conditions of the Creative Commons anomalies of the Intertropical Convergence Zone (ITCZ), strongly impact the temporal and Attribution (CC BY) license (https:// spatial distribution of precipitation. El Niño-Southern Oscillation (ENSO) induces strong creativecommons.org/licenses/by/ arid conditions in the northeast of South America and the north of Brazil, promoting the 4.0/). Water 2022, 14, 10. https://doi.org/10.3390/w14010010 https://www.mdpi.com/journal/water Water 2022, 14, 10 2 of 14 frequency and intensity of forest fires; while torrential rainfalls may hit the coastal areas of Ecuador, Colombia, and Peru, the north of Argentina, Uruguay, Paraguay, and southern Brazil [7,8]. Upper-latitude, extreme weather events such as cold fronts, ENSO, trade winds, and tropical cyclones are the most common phenomena that cause flooding in Central America and the Caribbean every year [9–12]. Furthermore, landfalling atmospheric rivers, defined as “river” bands of intense moisture transport in the atmosphere, are important systems for delivering heavy precipitation over the coastal regions and are, therefore, precursors of flooding [13,14]. According to the International Disaster Database (hereafter called EM-DAT) of the Centre for Research on the Epidemiology of Disasters (CRED), Université Catholique de Louvain (UCL), Belgium (Available online: https://www.emdat.be/ (accessed on 9 July 2021)), flooding constitutes a major natural hazard, responsible for 45% of the recorded natural disasters in LAC since the beginning of the 21st century. It is not surprising that scholars from all over LAC have studied the risk and hazards of floods from different perspectives. Recently, the scientific community aimed to unravel and understand the dynamics and trends of flooding using advanced methods and technologies. Unfortunately, developed knowledge in LAC is very fragmented, and a bibliometric database of the research related to flooding does not exist, even though a bibliometric analysis would be extremely helpful for the scientists, politicians, and water managers. Such an analysis would offer relevant conclusions regarding the recent evolution of flood knowledge. This would help scientists focus on gaps and support politicians and water authorities in the creation of adequate policies and measures. In this way, it would be possible to prevent and mitigate the effects of floods. 2. Materials and Methods We performed a bibliometric review of research papers that deal with the risk and hazard of flooding in LAC. The Web of Science (WoS) database was used to identify peer- reviewed articles published during the last two decades (period 2000–2020), using the fol- lowing selection criteria: [((TI = (flood *)) AND TS = (country_name)) AND PY = (2000–2020)) AND LA = (English)]. Individual searches for each LAC country were performed. In this study we decided to include Puerto Rico in the country list because, although it is not recognized as part of LAC according to the United Nations list, it represents an im- portant location in the Caribbean region. The search for the LAC countries yielded over 1887 references published in the 2000–2020 period. It is worth mentioning that the literature search with the flexible keyword term “flood” yielded a higher number of studies than this review attempts to address. Therefore, the searches were filtered by language, “English”, and by type of document, “Article”, narrowing the search space. Initially, the title, abstract, and keywords were screened to exclude articles that were not useful for the purpose of this study. The following exclusion criteria were applied: (i) papers not covering flood hazard or flood risk; (ii) papers that used the word “flood” in the title, keywords or abstract, but did not include a reference to flood hazard or flood risk in the article; (iii) book chapters, book reviews and book synopses; (iv) conference reports and readings; and (v) editorials and forewords. Differences in opinion during the identification process of relevant papers were reconciled by consensus, after which the text of the preselected articles was investigated. The selected articles were organized and classified in Microsoft Excel 2019, mainly using crosstabs. From each document, the information was collected according to temporal, geographical, methodological, aim and journal information. When an article covered different methods and aims, each one was accounted for independently. The percentage of publications with each function was quantified with a respective number of studies (n). 3. Results Applying the above-mentioned criteria to 302 flood-related research papers, 16% of the originally identified articles were selected for further analysis. Figure 1 depicts the geographical distribution of the selected articles. The analysis revealed that 21 LAC Water 2022, 13, x FOR PEER REVIEW 3 of 15 3. Results Applying the above-mentioned criteria to 302 flood-related research papers, 16% of Water 2022, 14, 10 the originally identified articles were selected for further analysis. Figure 1 depict3s otfh1e4 geographical distribution of the selected articles. The analysis revealed that 21 LAC coun- tries feature at least one peer-reviewed publication in English, implying that the remain- icnogu 1n2tr cieosunfetariteusr ediadt nleoat sptuobnlieshp eaenry- rfelovoiedw-reedlatpeudb alirctaictlieosn inin anEyn gjoliusrhn,ailm repglyisitnegretdh aint tthhee WremoSa idnaitnagba1s2ec. oInu nptrroiepsodrtidionno, 7t 1p%ub olifs thhea ncyouflnotordie-sr efleaatteudrea rttwicole osri nmaonrye jpouubrnliacal trieogniss,t earnedd 2in9%th feeWatouSred oantalyb aosnee. Ipnupbrloicpaotirotino.n T,h7e1 %cooufntthrieecso wuintthr itehsef elaartguersett nwuomobremr oorf eppuubblilsihcaetdio rnes-, saenadrc2h9 %pafpeeartsu arereo Mnlyexoicnoe, pBurabzliicl,a Ctiohnil.eT, Pheercuo, uanntdri Aesrgweinthtinthae (Tlaarbglees t1)n. uPmuebretroo Rfipcou,b olins hthede orethseear rhcahnpda, pbeorassatsr ea Mreecoxircdo o, fB 1ra4z pilu,bClihcialeti,oPnesr. uA, sa nexdpAecrtgeedn, tMineax(iTcaob alned1 )B. rPauzeilr fteoaRtuicroe ,tohne mthoesot tshiegrnhifaicnadn,tb aocaasdtsema rice ccoorndtroifb1u4tiopnusb ltioc aftliooonds-.rAelsateexdp esctuteddi,esM beexciacousaen odfB trhaeziril gferaeatuterre ttehrerimtoorsyt asingdn ipfiocpanutlaatciaodne (m47ic%c oonf ttrhibeu ttoiotanls).t oThfleo otodp-r efilvaete cdosutuntdriieess bceoclaleucsteivoeflyth peiurbglrisehaetedr 2te1r3r iatrotriycleasn,d repporpeuselanttiionng (7407%% ooff tthhee stocrteael)n.eTdh aerttoicplefisv. eThcoe ufrnetqriueesnccoyl ledcistitvriebluytpiounb loisf hthede a2r1t3icalersti aclcecso,rrdeipnrge stoen LtAinCg c7o0u%notrfyt haneds crreegeinoend isa rsthioclwesn. iTnh Feigfruerqeu Aen1c. y distribution of the articles according to LAC country and region is shown in Figure A1. Figure 1.. Spattiiall coverragee ((rreeddd dootst)s)o of fL LAACCfl ofloodo-dre-rlaetleadterde sreasrecahrcpha pearpseprsu bpluisbhleisdhiendW ino SWreogSi srteegriesd- tjeoruerdn ajolsu.rAnaltlist.u Adletiitnudmee itner ms aebteorvse asbeoavlee vseeal. level. In this study, publication growth represents the relative increase or decrease in the available statistics over a period. Unlike frequency, which only considered one aggregated period, the total time considered for the data collection was sliced into one-year time windows to calculate the growth of LAC’s flood-related publications. This approach was used to detect sudden bursts or declines by country, journal, and flood-related publications, since this could indicate major milestones or the discovery or failure of a research topic. Water 2022, 14, 10 4 of 14 WWaatteerr 22002222,,, 1133,,, xx FFOORR PPEEEERR RREEVVIIEEWW 44 ooff 1155 WW aatteerr 22002222,, 1133,, xx FFOORR PPEEEERR RREEVVIIEEWW 4 of 15 The country publication growth indicated that most LAC countries intensified their fl4 ooof d1-5 related research activities from 2010 onwards (e.g., Brazil, Chile and Peru, see Table 1). TTaabbllee 11.. RReeccoorrd and growth of flood-related publications in WoS jjournals of the Table 1. Recordd aanndd ggrroowwtthh ooff fflloooodd--rreellaatteedd ppuubblliiccaattiioonnss iinn WWooSS jjoouurrnnaallss ooff tthhee ttoopp ffiivvee lleeaaddiinngg TTLLaAabAblCCele c1c o.1ou.uR nRnetetcrrcoiieoersrsd.d. a annddg grroowwththo offfl fol oodd-r-reelalateteddp puubblilcicaattiioonnss iinn WooSSj ojouurrnnaalslso offt htheet ottoopppfi ffviivveeel elleeaaadddiniinnggg LL LA AACC C ccountries. Cocuo ouunntrtrieiess. . Counnttrryy NNoo.. ooff SSttuuddiieess PPeerrcent Country No centaaggee 22000000––22002200 CMooueunxntirtcyroy Noo... ooff Studi of8 SS0ttu uddieie ess PPe s Peerrcceennttaaggee 2000–2 r2c6e.n5t age 22000000––220002200 MMeexico 80 26.5 20 MBeerxax xiicco 80 26.5 ico Brazzilo 886001 2266..55 il 61 2200..22 BBBrarraza izzliill 666111 2200...2 CChhiillee 2299 99..6 2 CCChhhiliiellee 222999 999...666 6 PPPeereurruu 222333 77. ..66 Peru 23 7.6 AArrgPrggeener entni utnti ana 222030 766...666 NoAAterr:ggReeenndttcii innaaonlaou 2200 6.6 Note: Red color uforr fnoor r2ne0oco rrd a 6.6 Note: Red colour for no reecco nrdd balnued fbo6rl.u6eex ifsotern ecxe. Note: Red colour for no recoorrdd aanndd bblluuee ffoorr eexx iisstteennccee.. Note: Red colour for no record and blue for exiisstteennccee.. TIhn IInn e tthahinissn ssuttuaulddfyyr,e, pqpuuubebnlliicccyaattdiiooinsnt rggirbroouwwtittohhn rroeepfprLreeAsseeCnnttflsso ttohhdee - rrreeelllaaatttieivvdee aiinrntccircreleeaassseep ouorbr lddiseehccreedasine iWn othS-e raevgaisitlIae this study, publication growth represents the relati rease in the availanrbb eltledeh sisjsttoa asutttiirussnttdiaiccylsss, oopivsvueebsrrhl aiaoc pawpeteinrroiionoind dg..F r UUoignwnulltiirkhkee er 2 fefr.rpeerqTqeuhuseennactcnsyy a,,t lwhwyehsh eriicsechhlao ootfinv vtlheey e iicnnoteccnrmrseeiapanly considds soeeerrr aeoor elddr d od dineescetcr raieebgaaugssetreie oiignna ttohehfdee aapanvvenarauiiolalaadlbbp,l lteueh bssettl aiatsotthiitssaettdlii cctsiasm rootvveic eeclrreo saan hpspiieedgrrehiioorlieddgd..h UUftonntrhll itiekkhdeee effdrgreaerqtqeaueu ceeoonnflccy, which one aggregated period, the total tim lieync,t tewiroehnsi tcwhaan oosdnn slldlyyiec ccveooednnl oissnipiddtmoee rreoeennddte ot-orynneeenea daarg gstgigimnrreeeflgg woaaottieedndd- hpdpaeoezrrwaiiorosdd t,o,a tt nhchadeel cttrouoisttlakaallt aetti istmmsheee es sccmoonnsi gcoronewssniidtdt d heer e roer reseedd efd La fAf froo ocCrr rh the t’tshha efnel odd d oaa acta co dttaaa-n r cceooslalel lllreevccettiioaonsn awwbaaass s ssellilicced into one-year time win- dows to calculate the growth of LA lteecdti ponu bwliacsa tsiloicnineesdde. T ifinnohtrtiosoe aoovpnnapeelu-r-yoyaeaetaiacnrhr g ttwiimtmhaese uwwkseiiennyd-- tdotdopoo iwwdcessst otetoofc tfcc uaastluluccduuredllaaerttneees ttebhhaueerr cggshtrrs.oo Fwwoirgtt hhud oroeefcf lL2LinAAsehC Co’’wss fsflloothooaddt--rtrheelelaatnteed publications. This approach was u Cs ’bs yfl ocodu-nrterlya,t ejuoddmu pprbuunebbarllli,io ccfaantatiidroot ninfcslslo.e. oTTsdhhp-iiursse b aallpapistppehrrdeoo daapccauhhnb wnwliucaaasl luys seiesdd rtitsooi nddgee,tteeaccnttd ssutuhddeddgeenrno bwbuutrhrssttrssa tooerr i dsdeeincclcliirnneeeasss ibbnyyg .ccooTuuhnnettrtrryye,, n jjodouulrirnneaallf,, o aarnntddh effllpooeoorddi-o-rrdeell2aa0ttee0dd0 –pp2uu0b2bl0liicc aast tuiioosnnesds,, tssoiinn dccee ttehcits scuodudlden i nbduicrsattse omr adjoerc lminieles sbtoyn ceosu onrt rthye, jdoiu fiatsioanns, esxipnocne e ttnhhtiiissa lccocouurlldvde iinnadicate major milestones or the dissrccnooavvlee, rrayyn odorr f fflaoaiiolludur-reree oolaff t aea d rr eepsseueaabrrlcicchha ttoiooppniiscc,.. sTTihnhece e cc oot2huuinnst trcryoy u ppluudbb illniiccd ndaiditcciaoactotneer g rmmersoaapwjjootrnrh dmm sitloestthoenfeosl loorw tihneg deiqsucoavtieorny: lonr( ation growth iinnildeisctaotneeds t hora tt hmeo dsti sLcAovCe rcyo uonr t fYrfaai)eiills=uu ir0rnee.t1 eoo7nf7f s 4aaif ×irreedsXse e−taahrr3ecc5ihhr4 f.tt4looo8ppo7ii0dcc,-.. wTrTeihhtlheae t cRceooduu ernnqettsurreyyaa lpprtcuuohbb 0lal.ii5ccta2aitvt(iipoiot-ninve gasg lrrfuooreowwm≤tthh 20 ii0.nn0dd00iicc1aa)t.teeTddh ttehhavatta mrmiaoobssltte LLXAAiCCn cctohouuennettqrruiieeasst iionntensified their flood- related research activities from 2011d00i c ooanntewwdaa trrhddasst ((mee..gogs..,,t BBLrrAaazCzii llc,, o CCuhhniiltlerei eaasnn didn Pt nteeenrnresuspii,ffr iiseeesddee tntThhtaesebiitrrlh e ffel l1oo“)oo.n dd”-- yrreeeallarattseeTiddnh crereee ass2ene0aan0rru0cc.ahhlI afafccrtthetiiqevvuiic Peru, see Table 1). The annual tteuiienersscr eyffrnr oodtmmipst u 2r2bi00bl1ic0a otinownarradtes (ceo.ngt.,i nBuraezs,ilt,h Cehpilueb alnicda tPioenrur,e sceoer dTaobflfle o1o).d - relatedThaer taicnlensumal igffrrheetqqruueeeannccchyy1 dd20iisstatrrniibb 1uu0t tioioonnw oafr dLsA (Ce. gfl.o, oBdra-rzeill,a Ctehdi laer atincdle sP eprub, lsieshe eTda binle W1)o. S- du~ti3o0nn0 oionff 2LL0AA2CC5 affnlloodood2d0--rr3ee0ll,aartteesddp aearcrtttiiiccvlleelssy .ppFuuubbrlltiishshheeremdd oiinnre WW, thooSeS-- Water 2022, 13, x FOR PEER REVIEWrregisTt nroe engghiissott eehrre da nj meroeegdde jj onuuranla flrse iqsu sehnocwy nd inst rFiibguutrioe n2 .o Tf hLeA aCn aflyosoeds- roefl athteed t eamrtpicoleras lp duibstlrisibhuetdio in oWf oanS-- rneugaisl tpeurebdli sjnoo oeuuornals huerdrunn saarlldsstii cifi ifsse srsehhnoocwwenne qiinun aFFtiiigogunurrwee a22s.. TuThsheeed aatnnoaacllyhysaseersas cootfef rttihhzeee ttteehmme pdpoeovrraaelll o ddpiismsttrreiinbbtuupttiirooonnc e oo5sf fs o aaof nnf1--5 flnnouuoaadll- p sl essh ho rpeuulabbtlleiissdhhreeedds eaaarrrttciicchlleepssa hh iwigghnhl lignh Fti gthuer ed piegrhslpiigguhhbttl ittshhheee dd 2ee.g Trehee oafn ianltyesreess eigngrrWeeeeo ooSff- riienngtteiesrrteeess tto afa nthde d tevmeploopraml ednits ttrriebnudtis rte dannjdodu ddrenevvaelesllooinppmmdeeent trendso ininn o fffll ooaoondd- nhhuaazazala rrpddu abanlnidsdh rreiidsskk a aratssissceelessssm mhieegnnhtt l rirgeehsseet aatrhrccehh d aaenngddr e cceaa non f ssieenrrtvveere e aassts aan bbdaa sdseeellviinneeleo ffpoomrr eevn tnaatti llttu.rreaentniddnsgs iitnnh effll ookooeddy hthoaapzziaacrrsdd o afa nnfuddt urririssekk r eaassessaeersscsshmm. eeFnnigtt urrereesse earch and can serve as a baseline for evvaalluuaattiinngg tthhe key topics of future research. Figure 22a rschho wans dth caatn t hse rnvuem abs ear obfa asertlinclee sf opru ebvliaslhueadti anngn tuhaeel lkkyee iyys trtooisppiniiccgss, ooaffn ffduu tttuuhrreee grreerosseewaatrrhcch hr..a FFteiigg iuusr rieen 22c r ss shhoowwss tthhaatt the number of articles published annually is rising, and the growth rate is increehaaosswiinnsgg .t. h TTahht e et t hh ttre e re nnennu uddm m llib b ine eerr foooffr a atrrhttieicc llpees ne for the pese r ppiouudbb ll2iished an riod 2s00h00e00d–– 22a00n22n n0uu faal 0 fiitltsl lyys a iins ans rer ei ixssxpiinpnoog gn,,e aannntidda nentialttl hc huee r curg gvrreoo awwnttdhh c rroaarttreee siissp oiinnnccdrrsee aatossii ntnhgge.. fTTohhlleeo trend line for the period 2000–2020 fits an exponential curvvee aanndd ccoorrrreessppoonnddss ttoo tthhee ffoolllloo wtwreiingd e winngg ee lqi qq nu uu eaa tftioioornn t::h llnen (pYe) r=io 0d. ation: ln((YY)) == 00.. 11 2770770440 ××– X2X0−−233055 44f.i.4t4s8 7a0n,1774 × X−354.4887700,, ewwxiiptthoh n RRe22n eetqiqauul aacllu ttroov 0e0. .a55n22 d ((p pc--ovvrarleuse with R2 equal to 0.52 (p-vaalluuee p ≤o≤ n 00d..00s00 t00o11 )t).h. TeT hhfoee l vloawriianbgle e Xqu iant itohne: elnq(uYa)t i=o n0. 1re7p74re ×s eXn−t3s5 t4h.e4 8“7n0” ≤ 0.0001). The vvaarriiaabbllee XX iinn tthhee eeqquuaattiioonn rreepprreesseennttss tthhee ““nn”” , wyyeeiatahrr sRyear ss iin2n ecceqe u2ince 22 a00l00 t00o.. I0Iff. 5t000. If tt h2 e hhee ( pcc-uvrarleunet ≤p u0.b0l0ic0a1 cuurrrreenntt ppuubblliiccaa tt)ii.o oTnnh rreaa vtteea rcciooannbttlieinn Xuue eisns,, tthe tion rate continu he eppquuubballiticcioaatntii oornenp rrreeeccsooerrnddt soo tffh ffelloo “oondd”-- yrreellaaartt eesddin aacrertt ii2cc0lle0ess0 .mm Ifii ggthhtet rrceeuaarccrhhe n 11t22 0p0 uaanbnlddic ~~a33ti00o00n ii nnra 22t0e0 22c55o anantniddn u 22e0 es, the pub 0s33,00 t,,h rreee sspppueebcclt l ti iicvcaaettliiyoo.nn F rureercctohorerddrm oooff ively. Furthermorffellooo re,, otthd d- hee- rnreeollanattheeoddm aaorrttgiiceclnleeesso mmusiigg dhhittf frreach 120 and ~300 in 2025 and 2030, respectively. Furthermore, the nnoonnhhoommooggeenneeoouuss ddiiffffee erraeecnnhcc e1e 2 ee0qq auunaadttii o~n3 0w0 aisn u2s0e2d5 taon dch 2a0r3a0c,t erreiszpee tchtiev deleyv. eFluoprtmheernmt oprreo,c tehs rence equatioonn wwaass uusseedd ttoo cchhaaracterize the development procesess noooff nffllhoooomdd--orregelleaantteedod u rrsee ssdeeiaafrfreccrhhe pnpacaepp eerqrssu ppautuiboblnliis swhheeadds iuinns eWWdo otSoS- -rcreheggaiir rsaatcectrteeerrdiiz zje the develop stered jeoo uuthrrnen aadllses viinne l dodepettm maieel.nn tt pprroocceessss ooff ffll ail. ooBod-relate Boadass-erededl aootnne ddth rree ssreeeaasrrucclhhts pp, aathppee rrpsse ppruiuobbdlli isoshhf eeidnd t iiennr eWWsto o(SS2--0rr0ee0gg iitssotte e2rr0ee2dd0 jj)oo cuuarrnn aals in detail. the results, the period of interest (2000 to 2020) can bblsee iddnii vdviieddteaedidl . iinn tthBased on the results, the period of interest (2000 to 2020) can hee ffooll-- lloowwiinnBgga s ttehhdrre eoeen ss tttaahggeee srs:e: sults, the period of interest (2000 to 2020) can bbee ddiivviiddeedd iinn tthhee ffooll-- l(l(o o11w) wing three stages: (1)) inAgn t hinrieteia sl AAnn iinniittiiaall t ppaegereriisoo:d d ((22000000––22000055)) wwiitthh aa vvaarriiaattiioonn bbeettwweeeenn 11..1133 aanndd 33..0000 ((aa == NNttt//NNttt---11 wwhheerree (1) Att iinss ittnhhieet i yyael e ap preer ar,, r aai ionondd ((N22d N00ttt 0t 00 th0he––e 2 2c000 cuu0m 5) m5)uu wwlla it aitttih hv eaa nvvive nauariatio urmmiabbtieeorrn n oo b bff e eppt tuwwbeelen 1.1 ubleiissnhh 1ee.dd1 33 a a a rarttn niicd d cl e 33s..)00,00 a ((caac o== Nt/Nt-1 where t is the ye les), acco mmNppt/aNannt-ii1ee wdd hbbeyyr eaa tll aairsrg gtehe effl luyueccta a tur r,a,ua atatin noddn , NN wtt htthhiceeh cc wuumma ulative number of published articles), accompanied by a large fluctuatiioonn,, wwhhiicchh wassu eelaxxtppiveecect tneedud m ffoobrre ttrhh oeef i inpniuittibiaallil s sshttaeagdgee a iirnnt i tcthhleiiss ) ss, ttauucddcyoy.m. panied by a ((22)) lAAar ugunen iifmmluoocddtuaaall tppioeenrrii,o owdd h ((i22c00h0 6ww–aa2ss0 1ee1xx)pp ieencc ttweeddh iffcoohrr ttthhee iifnnluiittciitaaull assttiaaoggnee06 riiannn ttghheiis sw ssttauusdd syyig.. nificantly re- ((22)) AdAu uucnendiimm. Iootd dsaatlal rppteser rwiiooiddth (( 22a00 00s6l6o–– –220011) in which the fluctuation range was significantly re- duced. It starts with a sloww20 1g 11r1o)) wiinnt hww phheiiccrhhio ttdhh eefr ffollumucc tt1uu.1aa8ttii ootonn 1rraa.3nn8gg eae n wwdaa tssh sseiingg nndiifefiiccraaennattslleyys r rteeo-- d1d.uu1c3cee. dd.. IItt ssttaarrttss wwith a slow growth period from 1. ith a slow ggrroowwtthh ppeerriioodd ffrroomm 11..11 18 88 tt too 11..3388 aand t o 1.38 anndd tthh heenn ddeeccrreeaassees to 1.13. en decreasess ttoo ((33)) 1A1 A. .1 1 ss3 3tt. .aa bbllee development period stretching from 2012 to 2020. In this period, the value ((33)) AoAf ssatt aaisbb lsleet a dd deevelopment period stretching from 2012 to 2020. In this period, the value of a is stabbellev v eee aal ltoot ap pbmmoeuennt tt1 p.p1ee9rr,ii oaodndd ss tttrrheeettc cvhhaiinrnigg f about 1.19, and the variaa nnfrc r coe om 2 em iiss 2000. 0 .01 1 00222 t.to 202 02. o TT h2h0iiss2 0s 0t.. a IIgnne t thihmiissp pplieestage implier rsii oothdda,, tes tha ttt h hrees vveaa researllue ruccheh oeonff taa is entee rirsee ds stt aa bbsltle at d a steaa bbaltlee a a dbbeoovuu deveet tl o11p..11m99,,e aannnlopment ddp tht petehrieeo dvva,a wrriance is 0 riod, wiaiitnthhc essc cihhs oo0l. . laa0 0rr0 0s22s p. . p aT Tyhhayiii ins s nsg gs ti t ian a ng gcerecre iiammseppdllii eaeeased ast s tha tt tetehnnattit t io rrnee ssteoeaa trrhcch on to thihiss enter effinieetlleddr.e eAdd c aa. Acc cos st otrra adbl dbiilnne egg dd tte eovelopme ov tethhloeep iimddeeennn nttttii f p fpi eriod, with scholars paying increased attention to this field. According to the identifiie eddri ottrrdee,nn wddi,, t fhfllo osoocdhdo--rrleaellraastt epedda y sitnugd inesc ed trend, flood-r studies rwweaiilsllle rdree mamttaaeiinnt aiao rnree ltleoev vtahannistt fttiooeppldiicc., , A aancncddo riitdt sisneeegem mtoss ttthooe hh iaadvveeen tbbiefeieeennd tttrrriieggnggdeer,r eefdldo obbdyy- trthe elelaa ytteeedda rssstt uumddaiiejeossr w wEiiNllll SrrOeemm eaaviiennn aats r raeerlleev vraaennct-t totoorppdiieccd,, aa(2nn0dd0 i2itt– ss2ee0ee0mm3,s s2 tt0oo0 4hh–aa2vv0ee0 b5b,ee 2ee0nn0 tt9rr–iigg2g0g1eer0ree, dd by thhee yyeeaarrss mmaajjoorr EENNSSOO eevveennttss aarree rreecc-- oorrddeedd ((22000022––22000033,, 220004–2005, 2009–2010, 22 00b11y55 ––t2h20e01 1y66e,, aaarnnsdd m 22a00j11o99r [[E11N55]]S.. O events are rec- orded (2002–2003, 200044––22000055,, 22000099––22001100,, 22001155––22001166,, aanndd 22001199 [[1155]].. FiFgiugruere2 .2A. nAnnunaul afrle fqrueeqnuceyndciyst rdibisuttriiobnuotifoLnA oCf LfloAoCd -frleolaotded-raerlatitceleds aprutbiclilsehse pduinblWishoSe-dr eigni sWteroeSd-rjoeugrisntaelrse. d journals. Various criteria were used for the classification of the consulted articles. First, the journals in which LAC researchers prefer to publish were identified (Table 2): Natural Hazards, Journal of Flood Risk Management, and Natural Hazards and Earth System Sci- ences, respectively. These journals comprise 18.5% of the total number of flood-related articles (302) published by LAC researchers in the 2000–2020 period. The top 10 journals in this domain represent 36%, and the remaining 64% are published in the 152 flood-re- lated journals registered in WoS. The latter clearly indicates that the flood-related papers of LAC researchers are scattered across many scientific journals. However, the increase in publications in the top 10 journals over the past ten years reveals an increasing interest on the part of the LAC research community in publishing results in the most prestigious jour- nals in the field. Table 2. LAC’s publication record and growth of flood-related articles in the top 10 journals in the period 2000–2020. No. of Journal Studies Percentage 2000–2020 Natural Hazards 27 8.9 Journal of Flood Risk Management 16 5.3 Natural Hazards and Earth System Sciences 13 4.3 Water 12 4.0 Journal of Hydrology 9 3.0 Hydrological Sciences Journal 8 2.6 Sustainability 8 2.6 Geomorphology 5 1.6 Hydrological Processes 5 1.6 WW W aa atttee errr 22 2 00 02222,, 1133,, 2 xx FFOORR PPEEEERR RREEVVIIEEWW 55 ooff 1155 WWaaattteeerrr 222000222, 13, x FOR PEER REVIEW 5 of 15 2222,,, 111333,,, xx FFOORR PPEEEERR RREEVVIIEEWW 55 ooff 1155 W aa x FOR PEER REVIE 5 of 15 attteeerrr 2 22000222222,, , 1 11333,, , x xx F FFOORR P PEEEERR R REEVVIIIEEW 555 ooofff 111555 Water 2022, 14, 10 5 of 14 Based on the results, the period of interest (2000 to 2020) can be divided in the following three stages: (1) An initial period (2000–2005) with a variation between 1.13 and 3.00 (a = Nt/Nt-1 where t is the year, and Nt the cumulative number of published articles), accompanied by a large fluctuation, which was expected for the initial stage in this study. (2) A unimodal period (2006–2011) in which the fluctuation range was significantly reduced. It starts with a slow growth period from 1.18 to 1.38 and then decreases to 1.13. (3) A stable development period stretching from 2012 to 2020. In this period, the value of a is stable at about 1.19, and the variance is 0.002. This stage implies that research entered a stable development period, with scholars paying increased attention to FFigure 2. Annual frequency Fiigguurreeth 22i..s AAfinnennluudaa.ll ffArreecqqcuuoeernndcciyyn dgdiisstttorriibbution distribtuuhtteiiooinnd ooe ofnf LLtiAAfiCCed ffllootoroeddn--rrdee,llaaflttef LAC flood-relateeodd do aadrr-tticartiirccell lleeasst pepduubbslliitssuhhdeedide isinn wW io ollSS--rrreemggiisasttieenrreeadd jFjFooFiurna iiugggruuunrrrareeele l ss 222l. .e. . . vAAannnnnnntuuutaaaolll pfffrrrieeecqqq, uuuaeeennnndcccyyyit dddsiiiesssetttrrrmiiibbbsuuuttioonh aofv LeAbCee fnlotordig-rgeelarteedd barytitcleess ppuublis he yeabrlsis hhe medd iinajon r WW oS-re ENoSS-Oreggist eivsteerreedd ents FjFjojooiii ugugr uuurnrnnrrr aeaelsa l lr 22s . se... . rAenncnnouurdaallel ffdfrrreee(qq2uu0ee0enn2cc–cyy2 dd0i0iisss3tttrr,riii2bb0uu0tt tiiiooonnn ooofff LLLAACCC ffflllooooood-relate articles published in o -registered t journals. i4io–n2 o0f0f L5, 2C0 0 ffl9lo–o2dd d----rrrreeel 010elll,aa att2ttee ee0dd d 1 5aa arrr–rtt t 2tii iicccles published in WoS-registered journals. 0clll1eees6ss , ppauunbbdllliiisss2hh0eee1dd9 iiinn[1 W5]oo. SS---rrreeeggiiisssttteeerrreeedd jjourrnaVllsas.. r ious criteria were us VVaarrriiioouuss ccrrriiittteerriiiaa wweerree uusssee edd ffoorr tthhee ccllaassssiiffication of the consulted articles. First, the journVaalsr iionu sw chriicther iLaA wCe re sueaserdc ffoorr tthhee ccllaassssiififiicccaaatttiiiooonn ooofff ttthhheee cccooonnnsssuuulllttteeeddd aaarrrtttiiicccllleeesss... FFiirrsstt,, tthhee jjjoouurrnnVVaaala laassrrr iiiiooonnuuu wwsss hcricithe rLiaA wC erres euasrec rriiouss hccccrrririciiittthteeer rrrLiiiiaaaA wCee errrrreeees euuuassssreeecddd ddhh effefooorrssrrr ptttphhhrreee f fecccellrlraaa tssstossosii i fffppiiicccuuaaabbtttliiiloisnh owf etrhee icdoenstuifliteedd (aTratibcllee s2. ):F iNrsatt, utrhael HjHoauazzranararddlsss ,,i JnJoo uuwrrhnniaacllh oo fLf FFAlloCooo drde RsReiisaskrkc hMh effefors aoarnrrnsr a a pttptghhg rreeeee fm fecceclrelelraa nn tsstsottsso,s,i i i af pfafpiininc uccudaad bbttll tNiiNli ioio ioossnnhn nh owf etrhee idcoenstiufiletedd isaaht t uoo wofffwrf e a ett trthhhe co sulted urallr eHeee i ia idccdczooeeannnnrstsdtstiuuiifified ( Hazardssfll ilattaeteenndddd ( ( TaaTaarrraatbttbbiiilccclleleleleee 2ss2s2)...)) : ::FFF NiNiirrrasssatttt,,u,u ttrtrhhhaaeelel Hjjjoooauuuzrrrannnaall iinn whhiicchh LLAC rreesseeaarrcchheerrss pprreeffeerr too ppuubblliisshh weerree iiden arr denttiiffiieedd ((( ETTTEaattirbbrictcabtlll lhhleee sSSs22.y. y)) F:s:s titNNire 2): eerssmatt,t, u Stthrcaei-l jHejonuacrzrenasraar,d dlllsrsssse , ,,ii si nJnJJpoo ewuucrrrthhnniiviiacaccelhlhl loo y o LfLf.f FAFTFlloCholoeo orsrddreed sRs RsejeRoiiaassuirkrksrcrc ck MnhhMaeeMaalrrrsnsnas a acnppgogarrermeegemmffefpeemeerrrn in estttttoone,, ta ap1p,nn8uuadd.bnb5 Nl%Ndlliiissas ahNhottu uf aw rrttaauheellrrre r HeaHe t l aioaiiddHztzaeaeaalnrnr zddttntaiisisfufrf ii adiemaendndsbd d ae(( ( TnETrE adaaaobrbrftEtll hlehefa l SroS22tyo)y)h)::sd:s tNtS-eeryma aasttt tuuuSSrca amettu ra la Setrrcrmceaai i-ll eHnaaczzeaasr,r ddr id-ll-l SeHeacnnraaitccezzieecnaasslcrre,r, edd srrsse ess,,,s,s r JppJJeoooeesuuupccrtrtrinnvaaelll yoo.ff FTFllhooeoosdde Rjoiiusskkr n Malaasnn caaoggee preeinnstet,, a1an8n.dd5 %N aaottfuu rtrhaalle Htoaatzzaalr rndduss aannbdde rEE aoarrf tthfhl oSSoyydsst-tereemla SSteccdii-- aaerntcicelse,s r s(ese(,33, ss J00pJpo22eeu))cc r prt epninivcuvuaa te bel ibll lv ll oo ylyieff.s.fl h FyFT.hTehse sjeo ishTeelllhooddoeo bsbddeyy R jLLoiiiss ujor AAuskkr u CC nMranlasan lcsa tive y. These jour nn aarraellesnss eaec oagogcmremeocmcaorchmh pppee erprirrrn nisrisst tie te , s, eii, ena 1n81 an11 n 8t8t .85 hddh.5 . %5N% aotofu .5e e %% 22a 00oot0t0uf f00 f r rtrt–t–a ahthhleh22lle 0 0 eH 2tttoaao0ottaal20 zzt ppaaaelerr l r rddrn n iis u osuos d ada mnbdee e total numn.. bbTdTeeh hr EErr ee aa o o rrt f tr ffotot thhflffpll o So S1oyyo0dp 10sdss tt -j- jto-eoe rremll r of flood-rruueerlr a a nn SS tte lattaca ceec d liilddis- -s- eeerrnnttccicicceceellsssese,,,,s s rrr r(e(ee3ssss00ppp22eee))cccc pttpttiiuiivuvvbeebelllllilyyyiss.h... h TeTTedhhhdeebe sbssyseeye L jjjLjooAoAuuuCrrrCrnnnr aeaarlselllsssess a eccccraooocrmmhcehppprerrsrrriiiississn eeei n t111h 88t8eh....555e2% 020 0 o0oo0–ffff0 2 tt–tt0hhh22ee0 2ttttpo0ooe ttttpaaralielll o rnnndiouuu.dmmT.h bbbTeeeehrrr of flo in thi top 10 jodur-rneallasteind articless d (o30m2a) ipnu rbelpisrheseedn bt y3 6L%A,C a nreds ethaerc rheemrsa in itnh re oo tffof fpfflll oo1oo0dd j--o-rrrueelrllaanttateeldds tiaiaahnnrrri tttstt iiihhcccdllilieesesos s arrttiiccllesssmd d (o30 ((((o33a30m0i0n222 2aa))) ) )r i np i pepnppu u uurrrbbebeelppllsiiiesrsrshenehhsseteeeeddd3nn 6 tb y36 L%A, Can rdes t blliished bbtb% yyy3 , 6 LLLa%An,d Ca tn rrhrredeeesss seteer ehheaaaeemrrr crarrc cccrhhah heeieeemnrrrsa iini nt errisssasn iiiiginnni 6 ntttt4hhh hgg%eee 6240%00 a–r2e0 2p0u pbleirsihoedd. Tinh ge 6 6 222a44000r%%0e000 0 0paa–––rru222eeb000 2plp22i000usu h bbpppelleeeiidsrsrrihhiiioooneeddddt...h TiiTTennhhh 1tet eeethh tteeoo p1p152 flood-re- lated jo e 2000–2020 perriiod.. The5h tt2tteooo flpp1po5 111o2000 d j urnals liant ethdi sjo 5 11200 f f jjl lj-jooorueuouojooulrrd drrannn--rntra reaaeelalldllss-s -s in this s jiliioinannut etttrthhdhniii iassjsso l duormn ddsdu duoorororn nemmgaaaaaillssiisinnt n rer eregpisrtesrendt i3n6 W%,o aSn. Td hteh ela rtetemr aaalsiiinn r e e rrr r rg geeepipd ippssrrrt rt reiee e enssrs rse seeeWnnd dnntt t toi i n3n3S36 6 6t 36.W% %To,ho,, , , SaSeaa.n an.nn lT Tddadhht teh lea trteer d ttttehheh reelea crrtrrleteeemmar r aaaccllyiiilennneaaiiinnnrrlggldgyy i 6i4n%di caarte acilneainrlgy 666ciin4n44a%dd%teii s ccaaaaartrrtteheee e assp sppp t tuuuththbtuhbbbh al aallle i ttii tis s ss t ttfl hhhhoeeeeddod ffd lliiioohed f lion- nnnroo edtttdlhhh-a-eererte ee111llda5a2te fdlo poad o tdh-ere 1la555tt222epe dfl opoadpp--eerrreress-- ololaafft t LeLeddAA CjjCoo uurrerersnnseeaaaallsrsrc crrhheeeeggrriiss t aiiniing 64 arre publliisshheed iin tthe 152 fdffafllll opoopooeoadrddps----errrroereesf---- LlolllaaafAtt tteLeeCdddA r jCjjjoeoo suuurererrrannsnreaaacalllhlssrss e c rrrrhreeesegggraiiiisssrst tte taaeerrreee ddss taeeerrsrreeece ddadsc t cc tiiiaaennnttr t tWWeeedrreoooeaddSSSc ... a aTTcchrhrooees s llssaa tmttteeaarrnn ccyyll ee ssaaccririelleyynn titiininffiddiccii cjcjooaauutteerrssnn attahhllssaa..t t H H tthhooeeww ffeleloovvooeedrdr,,-- trrtheheleleaa ititnneecddcrr eppeaaassppeeee irirnnss popouffu LbAlicCa trie iant tWereodS. bLlAicCat rioeossnneessaa iirrnncc h httheheerress tt oaaorprpee 1 1ss00cc i i anajjoott ttuueerrronneeS.. a r TTTcohhrhsoeeses llmlslaaa tmttattttteneearrryrn cccycslllle ceesiaaacerrirrnlelllyyytni tfiiiiininnfcddidcjiioi iccjccuoaaautrttteenersssnsa tlattthshhl.saaa.tHt tt H ttttohhhoweeew fefffelllvloooveoooerddrd,,---t -rrtrhrheeeellellaaa ititnttneeecddcdrr e peppaaaaasspppeeeee iirrrnrnssss popoouffuff LbLbLlAliiccCaat t rriioeoessnneessaa iirrnncc hhtthehereress t taoaorprpee 1 ss10cc0 aajotjtottueeurrnreenad ddaal as corvoesrs tmhea npya stc tient yifeica rjos urernveaalsl.s Hano winecvrear,s tinhge incterereaste o in pthueb pli adll ssaala s ccocorrrovvoooveesssrresss r t t mmhhteheaaa enpnpnyyayap ss sassttccsc ttiitieeetnnne tttnyyiiifffeeiiyiacacce rr jjjassooo rururuseerrrvvnrnneeeaaavaalllsselsls.s..a HHaalsnnoooa wiiwnnneececivrvrvneeeecaarrr,ss,,e iitttannhhhsggeeei n iiiinnngtctcceeirrrnrreeeeetaaaessthe sssrttee eoo siiinnnt otppphnuuuebbtb pphllliiaia accrraat tt rt roiioeoofsfs nn etthshsa ereiirncn cLLh ttAAehhrCerCess t t rarooeerrppsese e1 1sasac00crra ccjjtoohthtterred accrrossss any sscci ecaptaiortnos finth teheL AtoCp 1re0s jeoauuu rccrrrcoonnnhmaaaclllmssso mooouuvvvnnmeeeiitrrrtuyy tttn hhhiinineeet y pppuiuaaanbsssbtttlpl iitt ieseehnnit tniyiffgeiica cr r jejoss uurrerlnvtsae ilalnssl.s . t haeno mineocvsretee rapr,s, r titehnsegt i igiinnicotcreurersae ssjsoet u o iirnn- ptnhuaebl spll iiiaccncrara ttttt t ioihoioofefnn t tfshshsi ee iiinnl LdL ttAt.Ahh eCeC t t troroeeppss e e 11aa00rr c jjcjoohhuu ccrrroonnmmaalllmsmss oouuvvnneeiirtrtry y ttt hin tsehni h inee p ppuaaussbbsttltl i tittse ueenb shhnnii ln nyyyigsgeeeh a aarrirerernssssg uurrreeellrttvvevssseee iiuaaannlll stsstts hh aaaeienn m iiitnnnhoocccessrrrtteeem ppaaasrsrosieeiisnnnsstgi ginioteurse jsotu orn- nthael yearrss rreveallss an iinccrreassiintggtgpi g iiiirnnnieottttseeeutrrrirseege sjssisotottt u ouoornnsn- jtnttothhhaueeelrs s ppnp iiaannrlrr stttt h h ooioneefff tfftthiiheel dL.A C resear p arrtt o ff t theeel dL LLfi.A elCd . r rrreeesssseeeaaarrrrccc c n chhh h c cc c cooo ommmmuuu unnniiiniittt tyyy in publishi ty i iiinnn p ppuuubbblllliiiisssshhhiiiinnn nggg rrreeesssuuullltttsss iinn tthhee moosstt pprreessttiiggiioouuss jjoouurr-- nnaallss iinn tthhee field. gg r rreess field. suullltttsss i iiinnn t ttthhheee mmooosssstttt p pprrrreeessssttttiiiigggiiiiooouuussss j jjjooouuurrrr---- nnnTaaalllblssssl ieiiinnn 2 t.ttt hhhLee field. TTTaaabbbllleee 2 22... LLLAA eA ffCfiiiee’slll ddp..u. blication record and growth of flood-related articles in the top 10 journals in the period 2000CC C’’’sss pppuuubbbllliiicccaaa–2020. tttiiiooonnn rrreeecccooorrrddd aaannnddd gggrrrooowwttthhh ooofff flffllooooooddd---rrreeelllaaattteeeddd aaarrrtttiiicccllleeesss iiinnn ttthhheee tttoooppp 111000 jjjooou Table 2. LAC uurrrnnnaaalllsss iiinnn ttthhheee ppTTeeaarriod 2000– Tabbbiiollledee 222...0 LL0L0AA–CCC2 2 ’0 ’’’0ss2 pp0u.u bblliiccaattiioonn rreeccoorrdd aanndd ggrroowwtthh ooff fflloooodd--rreellaatteedd aarrttiicclleess iinn tthhee tt Tablle 2.. L C’’ssss2 pp0p.uu.u bbblllliiiiccccaaattttiiiiooonnn rrrreeeeccccooorrrrddd aaannnddd gggrrrrooowtttthhh oooffff ffffllllooooooddd----rrrreeeellllaaatttteeeeddd aaarrrrttttiiiicccclllleeeessss iiiinnn tttthhheeee ttttooo ooppp 1110 journ p 1000 jjjooouuurrrnnn aaalllsss als i iii n nnn th ttthhh eee p ppp eer j r ls i t ee peeeerrr riiiod 2000–2020. p 10 journals in the Journal riiiooo oddd 2000–2020. Journal d 222000000000–––222000222000.... NNoo.. ooff Journal No. of Percentage 2000–2020 JJoouurrnnaal No. of Stud l SS SiNtetuusodd. ioieefss PPeerrcceenntttaaagggeee 222000000––2200222000 Noo.. NatuJJrooauul rrHnnaaazll Ntuod.. ioo oeffffs PPeerrcceennttaaggee 22000000––22002200 NaturaNNl HaatatuuzJJJarrooaaruudll rsrHHrnnaaazzlll aa arrddss 27 SSStttuu o u22d .d77 od i ef rds SStttuu2dd7ii i i ieee e sss ss PP Peeerrrrcccc8eee..nn.9n9t 8.9tt t aaagggeee 222000000000–––222000222000 JournaJJ Jloooouuufrr rFnn nlaa aol llo ood oNf NffNR Fa FFaaia lt llstttoo ou s attkuuu uooorrMr rrdal RHisakz aM rd d aaa a l al llR Hisakz al R nHiasaagakzzez amaMarrr rredddaannsssnt aaggeemeenntt 16 1222167767 558885....dans agement 1267 58..333 939 rdss 27 8..999 NNaa NaNttutuuJaJ JJrrJJrooto ooaau auuulrl rr arHnuul rrrH Hn nnnlaaHa aalz oafr dFsl allzl zl aorfd Fs l a ooaozfrffaf d FrFFdslll l looso o oaaondd R Eiaskrt hM Saynsatgemem Secniet nces 163 54.3 Natural Hazards aaoo oaonnndddd RREEiiiaaasssrrkrkkttt h hhMM SSaaayynnnssaaattegeggmeeemm SSeeeccnnniieettt nn cceess 11133666 44555....333 NNaaatttuuurrraaalllS HHysaaat d iissk zezzmaaarrrdSddcsssi e nWda Etear t aaannnnWcdddeaas EEEtteeaaarrrrr ttt hh SSayyna h Syssstgee h Systtteee m mm SSeccniiteet n ncc1ee3ss 111162323 5444....3.03033 atturrall aJzJooauurrdrrnnss aa alln Woodff aa HEHttaeeyyrrrrddt thrro o Sllyoosggstytye SSScccciiiieeennnccccWater eeessss 111119323 3 2 44..033 Journal WoWf aaHtteeyrrd rology 12 11922 43434.....300 4 4.0 JoHuHrynydadlJJJrroooouuufllooHrrrgnnngyiaaiacdclllaar oooll fflfSS a o HHc tctegiiyeyye rrn nddd ccrrreooeosslll ooo JJogggouyyyu rna 192 r nall 189892 43432....00060 Hyd 9 9 323....0600 HHyyyddd JJrJ rr oooouulloorrrnSgnguaiaiccllsla a toolal ff SfiS n HccaiiyeyebnddnilcrroloS rcireoosl olo teysllo o JJggooyyuu r rnnaall 9898 3232....0606 HydroHloyygddicrraroolllSlGoocSSgg ggiuueiiiiicnccs csactataaaelll si icall SSS SnnJccc cai euosmtaoirnpcaoaii iiehbue beennrin inllnccic ict cateee ey boilliotyyls ss Journal 8 ss JJJJoouurrnnaall 8 88 222.....666 GSeoustaoirnpahboiliotgygy y o urrnall 858588 212122.....6666 Sustaina Water 2022, 13S, uxstaiGnSaeuboimsltitaoyirnpah HH FyOyddRGGrS rPeoeouEoollsoEomstRgtgao oiiiRcicnrrEaappaVllhb bboiilliio h IPPEoioilrrWlllioiot tttyy 8 2 c ygcg ge e yy 8 58 12 yss sseess 855 2112 .....6666 eomor ...66 6 of 1 5 GeoHHydGreool Hmyyoddrprreoohollo oomlgoooigcrryrapp plhhh Pooorlllloooocgggeyyys s es 5 5555 111.6 1...666 Hyyydddrrrrooollllooo ogggiiicccaaalll PPPrrroooccceesssseess 55 11..66 Hydrological Prgogciiiccecaalll PPrrrooccceeessssssse sses seessss 555 11....66 5 1.6 I ntIenrtnearntiaotinoanla JloJouurnrnaall ooff DDiissaasstteerr Risk Reduct5ion 5 . Risk Reduction 1.6 Note: Red colour for no record and blue for existence. Note: Red colour for no record and blue for existence. LAC’s published flood-related articles also were classified according to their altitu- dinalL rAanCg’se pbuabselidsh oend tflhoeo Sdta-rdeelal t[e1d6]a vrteicrtleicsaal lzsoonwifeirceatciloanss, icfioendsiadcecroirndgin fogutor athlteitiruadlitnitauld cilnaas-l rsaens,g beebloawse d10o0n0 tmhe aS.st.al.d (eAl [=1 6h]ovte zrtoincael),z fornomifi c1a0t0io0n t,oc o2n00s0id mer ian.gs.lf.o (uBr =a ltteitmudpeinraatlec lzaosnsees),, bfreolmow 2010000 0tom 4a0.0s0.l .m(A a.=s.lh. o(Ct z =o ncoe)ld, f rzoomne1),0 a0n0dto a2b0o0v0e m40a0.0s .ml. (aB.s=.l.t e(Dm p= egrlaatceiazlo znoen),ef)r, orme- 2sp00e0cttiove4l0y0 (0Tmabale.s 3.l).. (TCh=e lcaotltderz coonme)b, ianneds athbeo vfreo4s0t 0a0ndm san.os.wl. (zDon=egs,l aacsi aspl zeocinfiee)d, r iens p[1e6c]t.i vTehlye (sTuarbvleey3 r)e.vTehaelelda tttheartc 7o7m%b oinf ethset hpeufbrloissht eadn darstnicolews czoonnseiss,t aosf sflpoeocdifi setuddiines[ 1i6n] t.hTeh heostu zrovneey, rceovaesatalel,d atnhda tlo7w7%lanofdt ohre fpouobthliislhl eadreaarst i(csleees Fcoignusriset 1o)f. flAoso tdhes teuldevieastiionnt hinechreoatszeosn teo, 1co0a0s0t aml, aan.sd.l. loanwdla bnedyoonrdfo, oat hmilalrakreeda sd(escereeaFsieg uinr eth1e). nAusmtbheer eolfe vaarttiioclnesi nisc roebasseersvteod1. 0T0e0mmpear.ast.el. aznondebse cyoornreds,paonmda rtko eadredaesc oref aisneteirnmtehdeiantuem mboeurnotfaainr tsiclolepseiss wobitshe ravlteitdu.dTeesm bpeleorwat e20z0o0n ems a.sl., which represent 9% of the analysed articles, and ~11% of the articles deal with re- search in the high mountain areas in the cold zone. A lower number of flood-related arti- cles are related to areas above 4000 m a.s.l. (~2% of total studies) and correspond to the highest mountain peaks and snow-capped mountain areas. Table 3. LAC’s flood-related articles ranked according to the altitudinal range of the study area and its growth. Altitudinal Range Climatic Zone Class No. of Studies Percentage 2000–2020 0–1000 Hot zone A 232 76.8 1000–2000 Temperate zone B 28 9.2 2000–4000 Cold zone C 35 11.5 >4000 Glacial zone D 7 2.3 Note: Red colour for no record and blue for existence. Keywords constitute an important feature of document retrieval, classification, topic search, and trend analysis, and they provide a glimpse of the article’s content. Several journals do not employ the keyword approach in their articles (e.g., Natural Hazards and Earth System Sciences and Journal of Hydrologic Engineering); as a result, 25 articles do not include keywords. In total, 865 different keywords were retrieved from 277 selected articles, among which 155 keywords (18%) possessed a frequency larger than 1. The high- est number of identified keywords and the low frequency of most keywords reflect a high variety in the objectives and methods of the consulted articles. Table 4 lists the 10 most used keywords and, as expected, the keywords “flood/s” and “flooding” featured the highest frequency, but together accounted only for 4.3% of the total number of used key- words. Mexico was the third most frequently used keyword, which is in line with the highest number of Mexican flood-related articles encountered among the total of con- sulted articles. Overall, the most frequently used keywords were related to flood hazard, risk, and vulnerability in relation to climate change. Surprisingly, the seventh most fre- quently used keyword was related to “GLOF”, which stands for Glacial Lake Outburst Floods, which shows that a considerable number of articles are related to outburst floods caused by the dam failure of a glacial lake in the Andes mountain range. It must be noted that the 10 top keywords by frequency only represent 12.5% of the total number of key- words. In addition, the 4 most frequently used keywords, together with their frequency, after the top 10 keywords listed in Table 4, were Haiti (9), flood hazard/s (8), flood man- agement (8), GIS (8; the acronym of Geographic Information Systems), and risk (8). Wat WWateerr 2 2002222, ,1 133, ,x x F FOORR P PEEEERR R REEVVIIEEWW 66 ooff 1155 W aatteerr 22002222,, 1133,, xx FFOORR PPEEEERR RREEVVIIEEWW 66 ooff 1155 IInntteerrnnaattiioonnaall JJoouurrnnaall ooff DDiissaster Risk Reduction 5 1.6 IInntteerrnnaattiioonnaall JJoouurrnnaall ooff DDiissa asstteerr RRiisskk RReedduction 5 1.6 asNtNeoort teRe:: i RsRkeed dR cceoodllo uuou ct ucrt i r i f on foorn no r5 1.6 r no r5eec coorrdd aanndd 1 bb.ll6uu ee ffoorr e exxiisstteennccee. NNo . ottee:: RReedd ccoolloouurr ffoorr nnoo rreeccoorrdd aanndd bblluuee ffoorr eexxiisstteennccee.. LLAC’s published flood-related articles also were classified according to their altitu- dinalLL rA ACC’’ss ppuubblliisshheedd fflloooodd--rreellaatteedd aarrttiicclleess aallssoo wweerree ccllassified according to their altitu- dinal raAannCgg’ese b pbauassbeelddis o honen dt th hfel oSotadd-reell [a1t6e]d v aerrttiicclaels z aolnsoif iwcaetrioe nc,l aacssossniiffsiiieeddde raaicncccgoo frrodduiinnr gga to thei e Stadel ltoit uthdeinirra aal llcttliiattuus- dinal range based on the Stadel [[1166]] vveerrttiiccaall zzoonniiffiiccaattiioonn,, ccoonnssiiddeerriinngg ffoouurr aallttiittuuddiinnaall ccllaass --- sdseeisns,, a blb erelaloonwwg e 1 1b00a00s00e mdm o ana..s st.h.ll.e. ( (SAAt a ==d hehlo o[t1t z6zo]o nvnee)r),t, i fcfrraoolm mzo 1n10i00f0i0c0 a tttooio 2n200,0 0c0o nms ida.esr.li.n (gB f o=u tre maltpiteurdatien azlo cnlaes)-,- fssreeossm,, bb 2ee0lloo0ww0 t 11o00 400000 0 m a.s.l. (B = temperate zone), from 2000 to 40 mm0 a.s.l. 00 m ma . saa..l.s. s. .l ((l. AA . ((C = C= = hh ooct zone), = coto lzlddo znzoeon)n,e f ef) rr), o om 1000 t , aamnnd d1 0aa0bb0oo vt ooe 242000000 mm aa...ss...lll... (((DBB == tgteelmamcppiaeelrr azatoteen zezo)o,n nree))-,, sffrprooemmct i 2v200e00ly00 (ttTooa 44b00le00 003 )mm. T aha..ess ..llla.. t((tCCer = =c occomolldbdi nzzone), and abovvee 4400000 m a.s.l. (D = glacial zone), re- spectively (Table 3). The latter combineoesns t eth)h,e ea f fnrrodos stat a banondvd es n4o0w000 zm a.s.l. (D = glacial zone), re- spectively (Table 3). The latter combines the frost and ssnnooww zz moon naee.ss,., la .a ss( Ds spp =eec cgiiflfiaieecddia i ilnn z [ [o11n66]e].). T ,T rhheee- sssupurervvceteiyyv rereleyvv e(eTaalaleebddl e tt h3ha)a.t t T 77h7%e ones, as specified in [16]. The survey revealed that 777%% l a ootftf e tthrh ece o ppmuubblilinissehhsee dtdh aear rftrtiiocclsletes sa cncoodnn ssniissott w oof fz fofllonooeodsd, sasttsuu sddpiieescs i ifinine tdthh eien h h[o1ot6t z]z.o oTnnheee,, cscouoarasvstteaayll, , r aaennvde alolewdl ta of the p d lowlahnnaddt 7oo7rr % ffoo ooftt hthhiillell apar uuebballsii ss(hhseeedd Faairrgttiuiccrllees s1 cc)o.o Annssii ssttth ooef fe ffllleoovooaddt i ssottnuu ddiniieecssr e iinans ttehhsee t ohh oo1tt0 zz0oo0nn mee,, Water reas (see Figure 1). As the elevation increases to 1000 m 2022, 14, 10 acc.oosaa.lss. ttaalnl,, d and lowland or foothill areas (see Figur a.s.l. anda n bbdee yyloownnddla,, n aad m moara rrfkokeoeddth didlele cacrrreeeaaasssee ( isinen e t thFheieg nunur eem 11b)).e. rAA oss ftt hhaeer t eieclleleevvsaa titisioo n increases to 10600o fm14 a.s.l. and beyond, a marked decrease in the nuummbbeerr ooff aarrttiicclleess iiss onob bisnseecrrrvveeaedds.e. sTT teeomm 1pp0e0er0raa tmtee zazo.osnn.lee.s sa cncoodrr rrbeesespypoonndd , ttoao amarreaearakss e oodff idinnettceerremmaeseedd iiianatt eet h mmeo onuuunnmttaabiinen r s o slolofp paeersst iwwclieitthsh iaasl lttoiit bbussdeeerrvvs eebdde. Temperate zones cor tudes be.l looTwwem 220p00e00r0 a mtme aza.o.sslnl..,e, sww chhoiirc rrhee ssrppeoponnredds ettono taa reas of intermediate mountain slopes with altitudes below 2000 m a.sl., whicchh rreepprreesseenntt 9r9%e%a s oo off ft 9% of tt hihneet aearnnmaalelyydssieeaddt e a amrrttioicculleensst,,a aiann dds l ~o~1p11e1%s% w ooifft htth haeel t aiartruttidiccleleesss b ddeeleaoalwl ww 2i0itth0h 0 r reme-- sacseoe.saarlrr.rc,ec hwsh p ihinoni nc tthdhe ert heopigarhre he analysed articl highes maemsnootou uf9nn%itntaa tioiennfr amtarhreeead asais an iitnane l tytmhhseeo d cuco onalldtrdat i izzcnol eensssle,,o . aapAnne ddslo w~~11ie1t1hr%% na uooltfmfi tttubhhdeeer e aasorrftbt iifeccllloleoeosswd dd-2reee0aal0lla 0twwemdiitt hhaa r.rrtseeil--.-, csswleeeahasrri ccahhre iri nner ep ttlhhraeeetse hehdnii ggtthoh9 %mamroeoauufsnnt htataabeiionnav naaerar eel4yaa0ss0e 0iidnn m tathhr ae cold zoonne. A lower number of flood-related arti- cles are related to areas above 4000 m teai. c.scsl.o.ell.ls. d (,(~ ~az22no%%dn eeo~.. f 1A lo ofA t1to %oltota wwol feser al strttuh n unde uuimber of diaemersst)b)i ceaalrnen dosdf d c ffloo coelooarrrole ddws--prriteeohllnate respoanrdtde d stdtoe o aa trrrhtctiieh- th- hccinlilegestshh eaaesrrtehe mirrgeeohllauamttneetoddau ittnoo t paaaeirrnaeekaassr eaaanbbsdooiv vnseent oh44w0e000c-00co almmdp p zaaeo..sdsn.. llem.. . ((oA~~u22l%n%ot w aooiefnf r ttaoonrttueaaamll sss.bt tueurddoiieefssfl)) oaaonndd- rcceoolrarrrteeessdppaoornntdidc ltteoos ttahhre e hhiigghheesstt mmount ee hreiglahteesdt tmoooauurnenatta aiiasin n ppanb poe eaaevaek kss aanndd ssnnooww--ccaapppped mountain areas. k4s 0a0n0dm snao.ws.l-.ca(~p2p%eeddo mmf tooouutannlttaasiitnnu daarireeesaa)ss.a. nd correspond to the highest TmTaabobluleen 3 3t.a. L iLnAACpC’e’ssa f kfllosoooaddn--rdreelslaantteoeddw a a-rcrttiaiccpllepesse r rdaannmkkeoeddu a nacctcacooirnrddaiinrngeg at toso. t thhee a allttiittuuddiinnaall r raannggee o off t thhee s sttuudy area and iTTtsaa bgbl dy area and its grl e roe o w 33. w.t LthL A.A CC’’sh. s fflloooodd--rreellaatteedd aarrttiicclleess rraannkkeedd aaccccoorrddiinngg ttoo tthhee aallttiittuuddiinnaall rraannggee ooff tthhee ssttuuddyy aarreeaa aanndd iiTttsas bgglrreoow3w.ttLhhA.. C’s flood-related articles ranked according to the altitudinal range of the study area and A AA l ll t tt iittud ituudd iinal innaall CClliimmaattiicc ZZoonniete s gCrCollwaastssh. AlRtiatundgien al s No. of Studies Per Range Climatic Zone Class NNoo.. ooff SSttuuddiieess PPeerr cceennttaaggee 22000000––22002200 Range Climatic Zone Class No. of Studies Percceennttaaggee 22000000––22002200 Alt0iRtu–da1i0na0gl0eR ange HColtim zaotinc Zeo ne AC lass No. of2S3t2ud ies Perc7en6t.a8g e 2000–2020 00––11000000 HHoott zzoonnee AA 223322 7766..88 0–01–10000 HotH zotoznonee AA 223232 776.68 .8 11000000––22000000 TTeemmppeerraattee zzoonnee BB 2288 99..22 10 101000000–0––2220000000 TTeemmTppeemerrpaaetrteaet ezzzooonnee BB B 222888 99.92..22 2200 2002000 00–0––440000000 CCoolldCdo zone C 0–4000 Cold zlzdooznonneee CCC 33355 355 1111 1.51..51.55 2000–4000 Cold zone C 35 11.5 >>4>404000000 GGllaacGciilaaalcl i zazlooznonneee DDD 77 22.3.3 >4000 Glacial zone 7 2.3 >4000 Glacial zone D 7 2.3 Note: RNDNeod ottceeo: 7 : l RoRueedrdf cocorolnlooouurrer c ffoorrrd nnaoon d rreebc 2 clouorerddf o aarn .3 ned dx i bsbtleluuneec e ffo. orr e x Note: Red colour for no record and blue for eexx iisstteennccee. . Note: Red colour for no record and blue for exiisstteennccee.. KKeeeyyywwooorrrddsss ccconssttiittuttee aan iimpoorrttaantt ffeeaattuurree ooff ddooccuumeenntt rreettrriieevvaall,, ccllaassssiiffiiccaattiion,, ttoopiicc sseeaarrccKhKh,ee, yayanwwdoo rrttdrdressn ccdo onnssttiittuuttee aann iimmppoorrttaanntt ffeeaattuure of document retrieval, classification, topic search, and trendo n aasnntaiatllulyytssseiiis ssa,,, n aa ninmdd p tttohhreetyay n pptr rfooevavitiiduderre ea oo gff lddimooccpuusmme eeonnft t t rrheeettr raiieervvtiaacll,,e cc’slla acssossiinffiticecaant e a glimpse of the article’s contentt ii.oo Snn, topic search, t. Se,e vtvoeeerprraaialcll jsjjoooeuuarrrncnahaal,l s sa adnnodod n ttorroetet nneedmd analysis, and they provide a glimpse of the article’s content. Several journallss ddoo nnoott eemm paplnlloooayyyl y tttshhhiesee , k kkaeeenyyydww otoohrrrdedy aa appprporrrovoaiaadcccehh iaiin n g tttlhhimeeeiirpr asaerrt tioiccfll eetshs (e(ee .a.ggr..t,, iNclaea’ttsuu rcraoalln Hteaanzzta.a rrSdessv aeanradl Ejoaaurrtrthn aSlys sdteom n oStc eiemnppcelloosy yaa n tnthdhdeeJ Jokkoueeuryyrnwwnaaololorr dodf f H a aHppyppdyrdrooralaoocclgohhig ciiinncE tntEhhgneeigi irr aarrttiicclleess ((ee..gg..,, NNaattuurraall Hazards and Earth System Sciences and Journal of Hydrologic Ennigrie inaneereteieinrcriglinen)g;sg a)();se; a.aagssr . ,aea N s rureaelstsu,u2lrlt5at,, l a2 HHr5t az 25ai cazrl ar ratetisrc ddldess and icleos sa n dndodt nE o Einno aaoct rr lttiuh S t hinnd cSel yyukssdetteye mmwke o SSyrccdwiieseo.nnrIccdneessst. o aclude keywords. aIt nnad In ld ,tto 8JoJt o6oa5uul,rdr n8ni6faaf5lle roodeffin fHHtfekyyrdedynrrwoot llkooreggdyiicscw wEEonnerdgrgeisinn rweeeteerrririiennv ggree))d;;t raafirsseo a result, tal, 865 different keywords were retrie vavme erdde2 s7 ffur7rolostmme, l 22 e255c7 taa7errd ttsiieaccllrleetcissct leddedoos , annaromottitc o iilnnegcsclude keywords. In total, 865 different keywords were retrieved from 227777 sseelleected articles,l, wua admhmeioc okhnneg1gy 5 ww5hohkireiccdyhhsw 1.1 o5I5nr55d ktksoee(ty1yaw8lw,% o8or)6rdpd5s osd ( s(1is1f8ef8s%e%sr)e) dn pptoao sksfsreseyesqswsuseeoeddrn da ca sy f frwrleaeqreqguruee rnrntechctyyra il nleaavr1rge.gdeTer rh ft rethohhamaning 1h21.7e. T 7sTt hhsneeu l hehm cictigtgb eehhe dd-r a - eaort esrsfttt i iindc c l nule e uenm s mst ,, ib aafiemmerd oonknf geigdy wwenhhotiirccfdhihes d11a55 nk55de kkyteewhyyeowwlroodowrrsdd afssrn e((d1q1 8u8th%%een)) c lppoyoowossf ssfeemrsessoqseesud a frequency ber of identified keywords and the low frequdteek nanec cfyyrywe o oqoffu rm dmensoocrsseytt fl kllaeaercrygtgweaerroh t keyworti hhdgan rdashs nr vr e 11eaf ..lr The fleTieecchttty ea h ai h i nhii ggitg h ghhe -- veeosasbttrj inenecu varieuttty m ymiv be ieibnnse r of id trath hnoeefd oiodmb ent bejejenetcctht iiti ffoiv iieded vedss s ko ka e afen y nytddh ww emoocrd meroedttnh sshs o aoaud n dnls dtds e o d t ot hfhf a e etthr lhlt oeoiec wwcleo f cofsn rrequ n.sesTuqualutb eelnc ltednedc 4ay yar l ootisiffct mslmetsooh.st keyw rticles. se TtT 1aka0beblymleew o4 oos rlrtiddsus refle 4 liststss ser tedthfhlekee e c c1 t 1yt0 a0wa m hmho ioirgogds h shtst uvvasanaerrddiiety in the objectives and methods of the consu used,e takykse eyeiynxww ptohoercerddt eoss db aa,jnentchddte,i, v akaesess y eaewxnxpopdere cdmctsteeed“dtflh,, ootthdohedse /koksefe” ytyhwawneo odcrrdod“nsfls s o“u lted articles. T “offldtlooeiodondd ga//”srs”t”fi ec aaalnetnusdd.r eT“da“fal bbotlhloeeed floo 44ihn lilgigists dings”h”t sef set ftt hhafeeatetru ue 11rq0re0eu d mme o d nttohc sseytt , huubis he huseiggeth d keywords and, a hdteoe skgstte e fytfrhreweeqqrouuraedecnncsco cyauy,nn, bdbtue,u dta t ssoo negelxxeyppthfeeoeccrrtte 4eadd.c3,,c% otthhuoeenf ttkkeheedeyy towwontooalryrldd nfssou r“m“ flood/s” and “flooding” featured the highest t together accounted only for 4f4bl.o.3e3o%r%do o/fosfu”f ts thaehedne d tkto oet“tyaafwll o nnoouurddmmisnb.bgeMe”rr e ofoxeffi a ucutousserwededad ksk ettehyhye-e- whtwhiogoirrhrdddessms.. t Moffrrseetqqxfuriuceeeoqnn ucwceyyna,, stbbl yuuthttu e tts ooetgghdeeirtktdhhee eymrrw aaooccsrcctdo of,uurwnenqttheeuiddce h nootninlsyllyyi n u ffosolierrnd 4e4 ..k3w3% of the total number of used key- words. MMeexxiiccoo wwaass tthhee tthhiirrdd mmost frequently used ke%eiyty hwowfto ohtrhreddeh,, tiwwgohthhaeilics chnth un iimsus m ibinneb r lel iroinnfoe e uf wwsMeiitdethxh k i tcethahyene- hwflhiigogohrhdee-ssrt.t e Mnlnauuteemxmdibcbaeoerr rt w iocoaflf es Ms Mteheenxexc iicotchauaninnr d tfef llormoeod oodss-at od-trm re ffrelrola eeq antqteg uudent edet hnaaert l rlt y tyti us ico cltuleaesl ee odedfn kckcooeeynuywswnutord s encountoeletrerdedd ,, wawarhmthiiiccoclhhens gi.is sOt hiinvne e llrtiioannlteela, lwwt hoiieftt hhmc ottohnhse-et shhfuriieggltqhheuedeess tant rtnntlyiuucmlmuessbbe.ee dOrr kvooeeffy r MaMwlloee, xrxtdihiccseaa wn flood-related articles encountereedd aammoonngg tthhee ttoottaall ooff ccoonn-- ssuulltteedd aarrttiicclleess.. OOverall, the nmm eoforlseostto r fefdrrle-earqqteueuldaeetnntetodtlly fly a uourostsiedecddlhe ksak ezeeyaynwrwcdo,orurrdidnsstsk e w,wraeendrrde ea rvrmeeulloalatnteeegdrd a t tbhtooie l f iflttloyoootoiadndl hrhoeaaflz azcataorirodndn,-, rstriouissklckt,le, i adman naddrt et vivccuulhellnasnn.ee rOgae vvb.eeiSlrriuaatyllrllp ,, i rtnthih sereien mmlgalootyisso,tttn hff rreteeoqqs eucuvleeiemnnnttaltlyhyte uum csshoeeasddtn kkfgreeeyy.q wwSuuoeonrrpddtlrssyi swwuinesegerredely rrk,e eetllhayatewtee dsdoe r tvtdooe wnfflltoaohoso dmdre hohlaasattzze aafdrrreddto-,, q“rriiGussekkLn,,O aFn”d, wvuhlincehrrsaatbbainillidittysy fiionnr rrGeelllaatctiiiooannl L ttoao k ccelliiOmmuaattbee change. Surp talyn du sveudl nkeeryawbiolirtdy iwna rse lraetliaotne dt ot oc l“imGLatOe u Fccr”hhs,aa twnnFgglhoeeio.c. hdSS suus,rrtwpapnrh riisisciinhnggslly, the seventh most fre ridssin fgolhryy o,,G wttlhhaseect ihssaeealv vtLeeaannkcttohehn Ommsiuodotsesbttr u affrbrseelte- - qnquuemennbttlleyyr uousfseeaddrt ikkceeyword was related to “GLOF”, which stands for Glacial Lake Outburs-t FqFlulooeoonddtsls,y, w wuhshieicdchh k sseh leyyoswwaoorser rdr ewlaates dretloaoteudt btuor “stGflLoOoFd”s,c wauhsiecdh bsytatnhdesd faomr Gfalialcuirael oLfaakeg lOacuiatbl ularkset FinlotohdesA, wndheicshm sohhuoonwwtassi tdthh awatt a as c crooennlsasitidededer rataobb ll“eeG nnLuuOmmFbb”ee,r r w oofhf aiacrrhtti icscltleaesns adarrsee f rorerl aGteldac tioa lo Luatbkue rOstu ftlbouodrsst cFaluosoedds ,b wy hthiceh d sahmow fasi ntltuhhraraaettn aoag fcec ao.o nIngtsslmaiiddcueiearsrlata lbballekeee n nn oiuuntmem tdhbbeteeh rrAa ootnfftd haaeerrstt1 iimcc0lleoetossu panarrtkeaee iryrne ewllaaottreedds ttbooy oofuurettbqbuurerssnttc ffylloooood e rlatnegde t. oIt o mutubsut rbset fnlotonedddlsy s crcaeaupusrseesdde bnbyty 1 tth2h.ee5 %ddaaommf tffhaaieilluutorretea oolffn aau gmgllabaceciiraalol lflaakkeeey iiwnn o the Andes mountain range. It must be noteds tcthhaauatts tethhdee b 11y00 t thtooepp d kkaemeyyw wfaooirlruddrsse b boyyf fafr regeqlqauuceieannlc clyya k ooenn lilyny trthhredepe s rep r AA.esInnneddnaeetdss 1 dmm2i.too5iuou%nn ,totaatfhii nnteh rr4eaa nmtnoggoteeas..l tItf rresent 12.5% of th Int ummemquuubssetet n rbb teeoly fnn ukooetsteeydd- wttkhheoaayrttdw ttshho.e erI d n11s 00a, dttoodgppie t kiktoheeneyy,rww twhooerirt ddh4ss mt bhbyoye is rfftrr feferrqqeeuquqeueunneecncnyyct y looy,nn aullfyystee rrdeet pphkrreeeeytsswoeepnnottr1 d1102s2k,.. 55et%%oygw oeootffh r ttdehhsre e l titsoottteaadll ninnuumber of key- words. In addition, the 4 most frequently used keywords, togethere w wtoiitthal tnhueimTmra bfbbreelererq o4ouf,fe wknkeceyyre-,- awwHftooaerritdd itssh(..9 eII) nn,to flaapodd od1dd0iitt ikihooeannyz,,w attrhhodeer/ d 44ss m m(l8ioso)t,ssettfld ffo rrioeendqq Tuumaeebnnalttnellyay 4 g u,ue wssmeeedder n ekkt eeH(yy8aww)i,tooiG rr(ddI9Ss)s,,, ( ft8tloo;ggotehedtteh hhaeearcrz r wwaorniidttyh hm their frequency, after the top 10 keywords listed in Table 4, were Haiti (9), flood hazardh//s t th(h8oee)fii,rr Gf flforereeooqqgduur maeenpnachcnyyi-c,, aaIgnffttefeeomrrr mtethhnaeett (tit8oo)np S1y0 skt s (8), flood man- agement (8p),, G1G0IIS Sk ( ee8myy; wwtsh)oo,erra ddanscsd r lloirissnitstyeekdmd( 8i ionn).f TTGaaebbollege r44a,, p wwheeicrr ee Haiti (9), flood hazard/s (8), flood man- agement (8), GIS ((88;; tthhee aaccrroonnyymm ooff GGeeooggrraapphhiicc IIn nHffoaorirmtmi a(9ti)o, nfl oSoy Informaattiioonn SSyy dsst ehmazsa) stteemmss)) ,r, d aan/nsd d( 8 rri)is,s kfkl (o(8o8))d.. man- age men , and risk (8). Tab le 4. tR (a8n),k GinIgS o(f8;t hthe eto apc-r1o0nkyemyw oofr GdseoingLraApCh’isc flIonofodr-rmelaattieodna Srtyicslteesmpsu),b alinshde drisink t(h8e). period 200 0–2020. GLOF: Glacial Lake Outburst Floods. Keywords Frequency Percentage Cumulative Percentage Flood/s 37 2.8 2.8 Flooding 20 1.5 4.3 Mexico 20 1.5 5.8 Flash flood/s 16 1.2 7.0 Vulnerability 16 1.2 8.2 Flood risk 15 1.1 9.3 GLOF 12 0.9 10.2 Climate change 11 0.8 11.0 Natural Hazard/s 11 0.8 11.8 Hazard/s 10 0.7 12.5 Tables 5 and 6 depict the ranking of the consulted articles in terms of “the aim of the study” and “the method used”. Due to the variety in aims and methods, only the main Water 2022, 14, 10 7 of 14 objective and methodological classes were delineated using the diversity approach. Under this approach, the main aims and methods appearing in the scholarly articles of flood- related research domain are categorized into distinct groups using relevant categorization characteristics; i.e., they are classified from specific to general. A brief description of each class listed in the tables appears in the Annex of this article. Regarding the aim and the method of the study, the articles were classified into five “aim” classes (Table 5), and six “method” classes (Table 6). The objectives of most of the consulted articles (class 2 in Table 5) are related to flood hazards and risk assessment (67.7%). Of this class, 45% of the articles focus on flood risk assessment, 26% on flood hazard mapping, and 9% on historical flood reconstruction. The second most common aim of the surveyed articles relates to the social aspects of flooding (12.4%) with vulnerability assessment being the most frequently cited social aspect (44%). The major “aim” of the third class (class 5) relates to the statistical analysis of floods, representing 10.2% of the surveyed articles. In total, 66% of the articles of this class focus on the development and use of statistical flood forecasting methods. Regarding the methodology used, most published studies applied flood hazard modeling (class 2 in Table 6), from which 61% of the articles used hydraulic/hydrodynamic models. The next most frequent method class, class 6 in Table 6, indicates that 23% of the articles included the use of geographical information systems and remote sensing, where 71% used different remote sensing techniques. In the third method class, class 5, the focus of the articles on the use of statistical methods (11.6%) can be observed, 43% are related to multicriteria analysis and decision making. Table 5. Ranking of the surveyed articles based on the aim of the study. Class Aim No. of Studies * Percentage 1 Evaluate climate and rainfall attributes 12 3.8 2 Flood hazard and risk assessment 213 67.6 3 Evaluate physiography, geomorphology, and ecosystem functioning 19 6.0 4 Social aspects, vulnerability, and resilience 39 12.4 5 Statistical analysis 32 10.2 * The total number of studies is higher since certain articles may feature aims in two different classes. Table 6. Ranking of the surveyed articles based on the methodology used. Class Method No. of Studies * Percentage 1 Climatological and hydrometeorological analysis 16 5.0 2 Flood hazard modelling and risk assessment 123 38.7 3 Physiographical, geomorphological and ecosystem functioning analysis 35 11.0 4 Social assessment, vulnerability and resilience analysis 34 10.7 5 Statistical methods 37 11.6 6 GIS and remote sensing 73 23.0 * The total number of studies is higher since certain articles may feature methods in two different classes. 4. Discussion 4.1. Countries Half of the flood risk studies in LAC from 2000–2020 took place in Mexico or Brazil, while Chile, Peru, and Argentina completed the top country list, with a total of 70% of the 302 studies analysed in the 21 LAC countries. There is a disproportion in the production of articles among Latin American regions, with South America being the most productive, followed by Central America due to Mexico’s scientific production. In last place is the Caribbean, where 8 of the 14 countries did not produce any articles, and most of their scientific production relates to Haiti and Puerto Rico. Similar to our findings, Díez-Herrero and Garrote [17] stated that Mexico and Brazil are also the countries that produced the Water 2022, 14, 10 8 of 14 highest number of published papers on flood risk papers between 1995 and 2019. The seven LAC countries with no publications are the smallest countries, with the lowest incomes, in Central America. Nonetheless, Jongman et al. [1] indicated that Latin America is a region with higher rates of exposed population to river and coastal flood hazards. Fang et al. [18] calculated the expected annual mortality risk of flood by country. Among the LAC countries Brazil is in the top 10% of countries, while Argentina, Mexico, Paraguay, Venezuela, Ecuador, Colombia, and Guatemala are among the top 10–35%. Peru, Chile, Uruguay, Bolivia, Nicaragua, and Cuba rank among the top 35–65% countries; Honduras, Haiti, Dominican Republic, and Costa Rica are in the top 65–90% country range; and Belize ranks in the bottom 90 to 100%. A similar country ranking is found based on the expected economic loss risk: Argentina and Brazil are in the top 10% class; Mexico, Venezuela, Colombia, Paraguay, Chile, and Ecuador are in the top 10–35% group of countries; Cuba, Guatemala, Peru, and Uruguay are in the top 35–65%; Bolivia, Nicaragua, Haiti, and Honduras are in the top 65–90%; and Costa Rica and Belize are in the top 90–100%). Sun et al. [19] measured the expected annual rate of affected population risk of storm surge by country, where Mexico is in the top 10–35%; Belize, Honduras, and Dominica are in the top 35–65%; Haiti, Cuba, Saint Vincent and the Grenadines, and Grenada are in the top 65–90%; and Venezuela and Nicaragua are in the top 90–100%. In addition, with respect to the expected annual affected GDP (Gross Domestic Product) risk by storm surge, Mexico is in the 10–35% country range, whereas Antigua, Barbuda, Cuba, Saint Kitts, and Nevis are ranked in the top 35–65% country class; and the Dominican Republic, Honduras, Belize, and Dominica are in the top 65–90%. Our results are consistent with the global assessments placing Mexico, Brazil, Chile, Peru, and Argentina among the countries with the highest mortality, affected population, and annual economic loss risk due to flood and coastal storm surge risks. Furthermore, other countries of the region appear in these rankings due to their extensive flatlands (i.e., Paraguay, Uruguay, Venezuela), populated mountain floodplains (i.e., Colombia, Ecuador, Bolivia), or their climatic interaction with the Caribbean Sea (i.e., Cuba, Honduras, Costa Rica, and the Dominican Republic). The results reflect the spatial distribution trends found in this study and highlight the paramount importance of flood-related studies in LAC countries classified as vulnerable. 4.2. Annual Pattern Extreme floods in the LAC region are likely to increase due to climate change and in line with the amplifying trend of flood disasters [20]. Hirabayashi et al. [2] identified an increased frequency of flood events coupled with the predicted climate change scenarios in the coming decades in LAC. The identified exponential increase in scientific articles on floods and hydrometeorological hazards is in line with previous findings by [17,21–23]. Emmer [21] discovered that climatic/hydro-meteorological hazards prevailed over geo- logical/geomorphic hazards (56% vs. 44%) globally and that floods constitute the top individual type of hazard in terms of the total number of published research articles. In concordance with our trend, Gao and Ruan [22] determined a punctual increase in coastal flood publications after the 2010s. In accordance with our findings and the identified exponential trend, Borges Leal da Silva et al. [23] indicated that, worldwide, 75% of the papers published in the period 2010–2019 related to flood risk management were published after 2015. Similarly, and in line with our findings, in a flood risk bibliometric analysis for the period 1995 and 2019, Díez-Herrero and Garrote [17] found that an exponential growth of published papers was observed globally, primarily from 2010 onwards. Although an increase in flood-related studies is expected, this does not mean that the number of countries dealing with floods will increase; the current top-publishing countries will most probably produce more research papers. Water 2022, 14, 10 9 of 14 4.3. Journals The top five journals in which active LAC researchers in the field of flood risk-related topics publish are Natural Hazards, Journal of Flood Risk Management, Natural Hazards and Earth System Sciences, Water, and the Journal of Hydrology. The LAC articles in these journals constitute a total of 25% of the 302 analysed studies. Other flood-related journals in which LAC researchers publish, albeit to a lesser extent, are the Hydrological Sciences Journal, Sustainability, Geomorphology, Hydrological Processes, and the International Journal of Disaster Risk Reduction. These findings are in line with recent bibliometric studies; for example, according to Borges Leal da Silva et al. [23], the top journals used by LAC researchers in the field of flood risk and climate change are the journals Water, Natural Hazards, and the Journal of Hydrology and Sustainability. Surprisingly, our results matched significantly well with the observations of Díez-Herrero and Garrote [17]. The bibliometric analysis conducted by these authors showed that the top journals focused on flood risk are, respectively, Natural Hazards, Water, the Journal of Flood Risk Management, Natural Hazards and Earth System Sciences, the Journal of Hydrology, and the International Journal of Disaster Risk Reduction. Interestingly, the top 10 journals listed in Table 2 all rank in the Quartile 1 category. Moreover, as stated by Abbott [24], the articles from this category are trustworthy and influence readers far more than when an article is published in a journal with a weak or absent quality reputation. The latter poses an important problem since flood risk-related articles of LAC researchers are published in the lower-ranked journals registered in WoS. The rise of new and emerging WoS-registered journals, in which flood risk-related articles are published, is worrying since of these journals can be of questionable quality and are less appreciated by readers. 4.4. Altitude The recent growth in the number of published articles by altitudinal zonification is in line with the rise in flood hazard and risk studies, which has become a key issue in lowlands since the beginning of the 21st century, followed by highlands; both are major zones of settlement density [16]. In line with expectations, the number of publications by Latin American researchers on flood-related topics are highest in the low-elevation coastal zone with its flat topography, dense population, and significant level of urbanization [25]. As projected by previous authors and Kulp and Straus [26], populations located in lowlands will increasingly be confronted with coastal flooding, supporting the need for an intensifi- cation of flood-related research in hot coastal zones [3]. Moreover, atmospheric rivers are critical systems for heavy precipitation and floods over littoral areas [14,15]. Only 23% of the surveyed flood-related LAC articles are oriented towards studies of areas with altitudes above 1000 m a.s.l. This tendency is not an excuse for not intensifying river flood studies at higher altitudes where populations are gathered along mountain floodplains (e.g., [27,28]). The potential for floods in highlands is realistic and often responsible for flooding at lower elevations. It is well known that steep topographies under intense rainfalls produce high- velocity discharges accompanied by the transport of sediments and debris, which often cause flooding in downstream valleys, where the human settlements and infrastructures are located [29,30]. Moreover, articles reporting flood studies in frost and above snow-line zones are mostly related to glacial lake outburst flood hazards, since they have recently been recognized for their catastrophic societal and geomorphic impact [31]. 4.5. Keywords Most of our top keywords were related to the term “flood”: flood/s, flooding, flash flood/s, flood risk, and GLOF. Moreover, “hazards”, “natural hazards”, “vulnerability”, and “climate change” were other frequently recurring keywords in the 277 analysed papers. Our results indicate that synonyms for the keyword “flood”, such as “overflow” or “heavy rainfall/precipitation”, are rarely used, whereas the term “extreme events” is more com- monly used (six times). Borges Leal da Silva et al. [23] found similarities in used keywords in their global work, coinciding with vulnerability, climate change, and flood (urban-, risk, Water 2022, 14, 10 10 of 14 hazard). In terms of coastal flooding, Gao and Ruan [22] found many similarities with the top keywords we found, especially the keywords “flooding”, “climate change”, and “flood risk”. GLOF is a keyword increasingly used in studies on the outburst of glacier lakes in the high Andean mountain range [31]. The keywords that are used just once exhibit a huge heterogeneity, which results in scattered information that is difficult to manage. As stated by Bekhuis [32], if keywords are too broad or too narrow, they are useless. Ade- quate keywords enhance the discoverability of articles and increase the chances of being retrieved and promote the citation count. The use of adequate keywords has a direct impact on citation counts [33–35], and the selection of too-specific keywords negatively affects citation counts. These facts constitute a problem, since they reduce the visibility of the LAC flood-related research from recent last decades. To overcome this problem, authors should carefully select keywords that are linked to a well formulated title and abstract; i.e., the standardization of the three components, title, abstract, and keywords. should be coherent [36]. 4.6. Aims and Methods In LAC countries, as in many developing and tropical nations, flood baseline infor- mation is often scarce. Therefore, practical methodologies must be applied to efficiently support disaster risk assessment (e.g., [37–40]). Our bibliometric analysis indicates that in LAC, the most common flood risk-related studies are linked to hydrometeorological analyses; flood hazard and risk assessment; physiography, geomorphology and ecosystem approaches; social aspects, vulnerability, and resilience studies; statistical analyses; and GIS and remote sensing. These findings are in accordance with Díez-Herrero and Garrote [17], who split their flood risk factors into hazard (hydrologic-hydraulic; geosciences, and histor- ical or paleo-hydrology), exposure (social and economic), vulnerability (social, economic, and analysis), and other (statistical analysis and GIS mapping). Furthermore, Borges Leal da Silva et al. [23] found that similar aims and methods are common in flood risk man- agement and climate change studies, such as hazard and risk assessment, vulnerability assessment, statistical analyses, and GIS mapping. However, new research challenges are emerging, which are presented in the following section. 4.7. Perspectives for Flood Management This review presents the knowledge generated to date from the scientific research in different regions of LAC, which is useful for identifying vulnerable countries that lack the resources to conduct research oriented towards combating floods. The review also provides insights to managers about the information’s location (journals and keywords) and which aspects (methodology and aim) are addressed for different vertical zonifications (i.e., altitudinal ranges). This will help to clearly identify the needs of each region respec- tively and provide a direction for decision making on issues related to flood management. Adaptation to floods will continue in LAC as scientific knowledge progresses; however, it is not possible to estimate how and to what extent this will take place in the different LAC countries. Nevertheless, it is inevitable that settlements in floodplains will face the risk of flooding. The adoption of structural measures vs. non-structural measures [41,42] that are a function of policies and the economy (low-income to high-income countries), together with a prospective view of future climatic conditions, are needed to assess flood risk and prepare for mitigation and adaptation measures. Therefore, this review offers, to politicians and water authorities, a basis for the formulation of adequate policies and measures that promote the production of scientific flood research to prevent and counter the destructive effects of floods in a climate change context across LAC. 5. Conclusions Based on the conducted bibliographic analysis, it is expected that the number of flood risk studies and research papers will further increase, and that this process will be acceler- ated by the imperative need for climate change adaptation. according to our understanding Water 2022, 14, 10 11 of 14 of the publication evolution and progress in the period 2000–2020, countries such as Mexico, Brazil, Chile, Peru, and Argentina will continue to lead research around flood risk assess- ment and the delineation of policies and management strategies to temper the destructive effects of flooding. In addition, the research community should encourage the development of flood risk studies in emerging flood areas such as Costa Rica, Dominican Republic, Haiti, Puerto Rico, Colombia, and Ecuador. It is compulsory to promote and increase flood risk scientific research in the entire LAC region, with specific attention to less developed coun- tries. Moreover, the academic community of the Latin American and Caribbean countries might keep publishing flood-related research findings in a limited number of specialized journals, such as Natural Hazards, the Journal of Flood Risk Management Natural Hazards and Earth System Sciences, Water, the Journal of Hydrology, Hydrological Sciences Journal, Sustainability, Geomorphology, Hydrological Processes, and the International Journal of Disaster Risk Reduction. Parallel to this, a growing acceptance of open-access initiatives sponsored by universities, public, private, and funding institutions will take place. The presented bibliographic analysis clearly reveals the prevailing trends in LAC’s flood-related research, highlighting the predominant ongoing research based on keywords, aims and methods, altitude, and reviews of the pattern of publication by country. Although the majority of publications in LAC are mostly associated with hydrometeorological anal- ysis, flood hazard/risk assessments, physiographic/geomorphological/and ecosystem approaches, vulnerability and resilience studies, statistical analyses, and GIS/remote sens- ing methods, we noticed some important gaps as well as new, emerging topics that need to be addressed or expanded in the coming years. In conclusion, we suggest five emerging directions for future flood-related research in LAC: (1) Intensification of the use of machine learning approaches and new satellite imagery products to improve flood prediction and flood early warning systems; (2) Research with a focus on the standardization of post-flood data collection for model validation; (3) Identification of the role vegetation plays in flood episodes; (4) Search for adequate and cost-benefit structural and non-structural flood pro- tection policies and measures; and (5) Analysis of the interaction and effects when flooding occurs at different locations in river networks simultaneously. Based on past and present research, it is to be expected that the flood-related research community in LAC will develop flood risk reduction solutions in a timely manner. Author Contributions: Conceptualization, J.P.; methodology, J.P.; software, J.P.; validation, J.P. and A.Q.-R.; formal analysis, J.P. and A.Q.-R.; investigation, J.P. and A.Q.-R.; resources, J.P. and A.Q.-R.; data curation, J.P. and A.Q.-R.; writing—original draft preparation, J.P. and A.Q.-R.; writing—review and editing, J.P. and A.Q.-R.; visualization, J.P.; project administration, J.P. and A.Q.-R. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. Data Availability Statement: The data presented in this study are available on request from the corresponding author. Acknowledgments: Juan Pinos was the beneficiary of an FPI grant (BES-2017-082234) funded by the Spanish Ministry of Science and Innovation. Thanks to Hugo Rodríguez-Bolaños from the University of Costa Rica who assisted in the bibliometric process. Special thanks to Soll Kracher for the English grammar and syntax revision. Conflicts of Interest: The authors declare no conflict of interest. Water 2022, 13, x FOR PEER REVIEW 12 of 15 flood prediction and flood early warning systems; (2) Research with a focus on the stand- ardization of post-flood data collection for model validation; (3) Identification of the role vegetation plays in flood episodes; (4) Search for adequate and cost-benefit structural and non-structural flood protection policies and measures; and (5) Analysis of the interaction and effects when flooding occurs at different locations in river networks simultaneously. Based on past and present research, it is to be expected that the flood-related research community in LAC will develop flood risk reduction solutions in a timely manner. Author Contributions: Conceptualization, J.P.; methodology, J.P.; software, J.P.; validation, J.P. and A.Q.-R.; formal analysis, J.P. and A.Q.-R.; investigation, J.P. and A.Q.-R.; resources, J.P. and A.Q.- R.; data curation, J.P. and A.Q.-R.; writing—original draft preparation, J.P. and A.Q.-R.; writing— review and editing, J.P. and A.Q.-R.; visualization, J.P.; project administration, J.P. and A.Q.-R. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. Data Availability Statement: The data presented in this study are available on request from the corresponding author. Acknowledgments: J. Pinos was the beneficiary of an FPI grant (BES-2017-082234) funded by the Spanish Ministry of Science and Innovation. Thanks to Hugo Rodríguez-Bolaños from the Univer- sity of Costa Rica who assisted in the bibliometric process. Special thanks to Soll Kracher for the Water 2022, 14, 10 12 of 14 English grammar and syntax revision. Conflicts of Interest: The authors declare no conflict of interest. Appendix A Appendix FFiigguurreeA A11. . BBaarr cchhaarrtt ooff tthheef frreeqquueennccyy ccoouunntt oofffl folooodd--rreelalatteedd aarrtticiclleess ppuubblliisshheedd iinn WooSS-r-reeggisisteterreedd jojouurrnnaalslsb byyL LAACCc coouunntrtryya annddr reeggioionn. . AAiimc clalasssseessd deessccrripipttioionn:: 11. . Evaalluaattee cclliimaattee aand rraaiinffaallll aattttrriibutteess:: Trreendss iin prreecciipiittaattiion eexxttrreemeess aand cchaarraacc-- tterriissttiicss due tto clliimatte change ((e..g..,, ffrreequeenccyy aannaallyyssiiss ooff rraaiinnffaallll,, cclliimaattee mooddeellss)).. 2. Flood hazard and risk assessment: Identify areas/assets at risk of flooding, and consequently to improve flood risk management and disaster prevention (e.g., flood mapping, develop a flood risk methodology). 3. Evaluate physiography, geomorphology, and ecosystem functioning: Determine changes in landscape functionating (e.g., assess the influence of different land use and land cover, dynamics of floodplain environments). 4. Social aspects, vulnerability and resilience: People behaviour and dynamics in flood- ing events (e.g., measure perceptions of flooding and resilience to flooding by context, gender and time, develop a vulnerability index). 5. Statistical analysis: Identify trends by applying statistical methods (e.g., flood uncer- tainty, flood reconstruction). Method classes description with examples: 1. Climatological and hydrometeorological analysis: (e.g., standardized precipitation index, object-based rainfall analysis, historical climatology analysis). 2. Flood hazard modelling and risk assessment: (e.g., flood hydrodynamic modelling, flood loss models). 3. Physiographic, geomorphologic, and ecosystem functioning analysis: (e.g., land morphology mapping, paleotempestology, space-time analysis of land-use changes). 4. Social assessment, vulnerability and resilience analysis: (e.g., vulnerability estimation by bivariate correlations, resilience index, semi-structured interviews, qualitative case study approach). 5. Statistical methods: (e.g., multicriteria analysis, fractal analysis, generalized likelihood uncertainty estimation). Water 2022, 14, 10 13 of 14 6. GIS and remote sensing: (e.g., topographic map, satellite imagery, ArcGIS, digital elevations models). References 1. Jongman, B.; Ward, P.J.; Aerts, J.C. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Change 2012, 22, 823–835. [CrossRef] 2. Hirabayashi, Y.; Tanoue, M.; Sasaki, O.; Zhou, X.; Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 2021, 11, 3740. [CrossRef] 3. Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [CrossRef] [PubMed] 4. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [CrossRef] 5. Dottori, F.; Szewczyk, W.; Ciscar, J.C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Feyen, L. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 2018, 8, 781–786. [CrossRef] 6. Sandoval, V.; Sarmiento, J.P. A neglected issue: Informal settlements, urban development, and disaster risk reduction in Latin America and the Caribbean. Dis. Prev. Manag. 2020, 29, 731–745. [CrossRef] 7. Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Vera, C. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [CrossRef] 8. Glantz, M.H.; Ramirez, I.J. Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. Int. J. Dis. Risk Sci. 2020, 11, 394–403. [CrossRef] 9. Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [CrossRef] 10. Reguero, B.G.; Losada, I.J.; Diaz-Simal, P.; Mendez, F.J.; Beck, M.W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 2015, 10, e0133409. [CrossRef] 11. Campos-Durán, D.; Quesada-Román, A. Riesgos intensivos y extensivos en América Central entre 1990 y 2015. Anuá. Inst. Geoci. 2017, 40, 234–249. [CrossRef] 12. Guevara-Murua, A.; Williams, C.A.; Hendy, E.J.; Imbach, P. 300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America. Clim. Past 2018, 14, 175–191. [CrossRef] 13. Viale, M.; Valenzuela, R.; Garreaud, R.D.; Ralph, F.M. Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeorol. 2018, 19, 1671–1687. [CrossRef] 14. Zhang, Z.; Ralph, F.M.; Zheng, M. The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett. 2019, 46, 1814–1823. [CrossRef] 15. CPC-Climate Prediction Center. El Niño/Southern Oscillation (ENSO). National Oceanic and Atmospheric Administration (NOAA), National Weather Service (NWS), College Park, MD, USA, 2021. Available online: https://origin.cpc.ncep.noaa.gov/ products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 18 October 2021). 16. Stadel, C. Altitudinal belts in the tropical Andes: Their ecology and human utilization. In Yearbook (Conference of Latin Americanist Geographers), Auburn, AL, USA; University of Texas Press: Austin, TX, USA, 1990; pp. 45–60. Available online: https://www.jstor. org/stable/25765738 (accessed on 10 July 2021). 17. Díez-Herrero, A.; Garrote, J. Flood risk analysis and assessment, applications and uncertainties: A bibliometric review. Water 2020, 12, 2050. [CrossRef] 18. Fang, J.; Li, M.; Shi, P. Mapping Flood Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef] 19. Sun, S.; Fang, J.; Shi, P. Mapping Storm Surge Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef] 20. IPCC. Global Warming of 1.5 ◦C. An IPCC Special Report on the Impacts of Global Warming of 1.5 ◦C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2014. Available online: https://www.ipcc.ch/sr15/ (accessed on 22 June 2021). 21. Emmer, A. Geographies and scientometrics of research on natural hazards. Geosciences 2018, 8, 382. [CrossRef] 22. Gao, C.; Ruan, T. Bibliometric analysis of global research progress on coastal flooding 1995–2016. Chin. Geogr. Sci. 2018, 28, 998–1008. [CrossRef] 23. Borges Leal da Silva, L.; Alencar, M.H.; de Almeida, A.T. Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. Int. J. Disaster Risk Reduct. 2020, 50, 101865. [CrossRef] 24. Abbott, J.H. How to choose where to publish your work. J. Orthop. Sports Phys. Ther. 2017, 47, 6–10. [CrossRef] 25. Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [CrossRef] [PubMed] 26. Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Comm. 2019, 10, 4844. [CrossRef] [PubMed] Water 2022, 14, 10 14 of 14 27. Pinos, J.; Timbe, L.; Timbe, E. Evaluation of 1D hydraulic models for the simulation of mountain fluvial floods: A case study of the Santa Bárbara River in Ecuador. Water Pract. Technol. 2019, 14, 341–354. [CrossRef] 28. Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Granados-Bolaños, S.; Birkel, C.; Stoffel, M. Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology 2022, 396, 108000. [CrossRef] 29. Pinos, J.; Timbe, L. Mountain riverine floods in Ecuador: Issues, challenges, and opportunities. Front. Water 2020, 2, 36. [CrossRef] 30. Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in mountain environments: A synthesis. Geomorphology 2016, 272, 1–9. [CrossRef] 31. Veettil, B.K.; Kamp, U. Glacial lakes in the Andes under a changing climate: A review. J. Earth Sci. 2021, 32, 1575–1593. [CrossRef] 32. Bekhuis, T. Keywords, discoverability, and impact. J. Med. Libr. Assoc. 2015, 103, 119. [CrossRef] 33. Uddin, S.; Khan, A. The impact of author-selected keywords on citation counts. J. Informetr. 2016, 10, 1166–1177. [CrossRef] 34. Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [CrossRef] 35. Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide research trends in landslide science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [CrossRef] 36. Martinsson, A. A coherent philosophy of titles, abstracts and keywords in scientific articles. In Scientific Information Transfer: The Editor’s Role; Balaban, M., Ed.; Springer: Dordrecht, The Netherlands, 1978. [CrossRef] 37. Pinos, J.; Orellana, D.; Timbe, L. Assessment of microscale economic flood losses in urban and agricultural areas: Case study of the Santa Bárbara River, Ecuador. Nat. Hazards 2020, 103, 2323–2337. [CrossRef] 38. Quesada-Román, A.; Villalobos-Chacón, A. Flash flood impacts of Hurricane Otto and hydrometeorological risk mapping in Costa Rica. Geogr. Tidsskr. 2020, 120, 142–155. [CrossRef] 39. García-Soriano, D.; Quesada-Román, A.; Zamorano-Orozco, J.J. Geomorphological hazards susceptibility in high-density urban areas: A case study of Mexico City. J. S. Am. Earth Sci. 2020, 102, 102667. [CrossRef] 40. Quesada-Román, A.; Villalobos-Portilla, E.; Campos-Durán, D. Hydrometeorological disasters in urban areas of Costa Rica, Central America. Environ. Hazards 2021, 20, 264–278. [CrossRef] 41. Thampapillai, D.J.; Musgrave, W.F. Flood damage mitigation: A review of structural and nonstructural measures and alternative decision frameworks. Water Resour. Res. 1985, 21, 411–424. [CrossRef] 42. Schanze, J.; Hutter, G.; Offert, A.; Penning-Rowsell, E.C.; Parker, D.; Harries, T.; Werritty, A.; Nachtnebel, H.-P.; Holzmann, H.; Neuhold, C.; et al. Systematisation, Evaluation and Context Conditions of Structural and Non-Structural Measures for Flood Risk Reduction. (CRUE Research report; No. I-1). CRUE Funding Initiative on Flood Risk Management Research. 2008. Available online: http://www.flood-era.ioer.de/files/FLOOD-ERA_Final_report.pdf (accessed on 9 December 2021).