Ciencia  y  Tecnología,  27(1  y  2):  78-­‐‑83,  2011   ISSN:  0378-­‐‑0524     VISCOUS-­‐‑FLOW  MECHANISM  OF    #6  FUEL  OIL  –  PALM  OLEIN  MIXTURES     Ritzela  E.  Lezcano-­‐‑González1  and  Julio  F.  Mata-­‐‑Segreda2     Laboratory  of  Bio-­‐‑organic  Chemistry,  School  of  Chemistry,  University  of  Costa  Rica,  11501-­‐‑2060  Costa  Rica.     Recibido  23  de  mayo,  2010;  aceptado  10  de  diciembre,  2010       Abstract     The   viscosities   of  mixtures   of   #6   fuel   oil   and   palm   olein   at   60   °C   do   not   obey   Kendall-­‐‑Monroe   equation.     Molecular   considerations   predict   deviation   from   ideal-­‐‑mixture  behaviour  for  this  kind  of  “binary”  material.    It  is  proposed  that  the   observed  positive  deviations  are  mainly  due   to   looser  molecular  packing   in   the   mixtures  than  in  the  “pure”  components.    Thus,  mixing  results  in  a  lesser  degree   of   hindrance   for   the   viscous-­‐‑flow   process.     The   empirical   fit   of   fluidity   as   a   function  of  olein  mass   fraction   (x)   is   ln   [Φmix/Φolein]   =   -­‐‑   (2,72±0,05)  +   (5,6±0,3)  x   -­‐‑   (2,9±0,3)  x2;    r2  =  0,992,    p  <  0,01.     Resumen     Las   viscosidades   a   60   °C   de  mezclas   de   aceite   bunker  C   y   oleína   de   palma   no   muestran   conformidad   con   la   ecuación   de   Kendall-­‐‑Monroe.     Consideraciones   moleculares   predicen   la   desviación   del   comportamiento   de   mezcla   ideal,   para   este  caso  de  material  “binario”.    Se  propone  que  las  desviaciones  positivas  de  la   fluidez   se   deben   a   un   menor   grado   de   empacamiento   molecular   de   los   dos   componentes  “puros”  de  las  mezclas,  resultando  así  en  una  menor  resistencia  al   flujo.    El   ajuste   empírico  de   la   fluidez   como   función  de   la   fracción  ponderal  de   oleína  (x)  es  ln  [Φmix/Φolein]  =  -­‐‑  (2,72±0,05)  +  (5,6±0,3)  x  -­‐‑  (2,9±0,3)  x2;    r2  =  0,992,    p  <   0,01.     Key  words:  #6  fuel  oil,  palm  olein,  viscous  flow,  Kendall-­‐‑Monroe  equation.     Palabras  claves:  búnker  C,  oleína  de  palma,  flujo  viscoso,  ecuación  de  Kendall-­‐‑Monroe. I   INTRODUCTION     It   is   widely   accepted   that   climate   change   is   an   urgent   problem   that   requires   globally   concerted  actions.    Atmospheric  CO2  accounts  for  63  %  of  the  gaseous  radiative  forcing  responsible   for  anthropogenic  climate  change  [1].    From  the  so-­‐‑called  Keeling  curve,  we  have  calculated  that   atmospheric  CO2  has  been  increasing  at  an  annual  rate  of  0,4  %  during  the  last  five  decades.    This   growth   is   mainly   due   to   two   sources   of   this   greenhouse   gas:   a)   emissions   from   fossil-­‐‑fuel   1 Current  address:  Department  of  Physical  Chemistry,  School  of  Chemistry,  University  of  Panama,  Panama  City.   2  Corresponding  author,  e-­‐‑mail:  julio.mata@ucr.ac.cr   R.E.  LEZCANO-­‐‑GONZÁLEZ  –  J.F.  MATA-­‐‑SEGREDA   Ciencia  y  Tecnología,  27(1  y  2):  78-­‐‑83,  2011  -­‐‑  ISSN:  0378-­‐‑0524   79 combustion   and   industrial   processes   (23   Gt   CO2   per   year)   and   b)   production   due   to   land-­‐‑use   change,  mainly  land  clearing  (5,5  Gt  CO2  per  year).    The  first  source  has  been  growing  rapidly  over   recent  years,  and  the  latter  remaining  nearly  steady  [1].   FIGURE  1.    Keeling  curve.    The  proportional  rate  of  CO2  enrichment  is  0,40  %  y-­‐‑1  during  the  last  five   decades  [2].   Different   actions   make   possible   the   lessening   of   enviromental   impacts   due   to   CO2   accumulation  in  the  atmosphere.    One  is   the   improvement   in  the  use  of   thermal  energy  and  also   the  partial  substitution  of  fossil  fuels  used  in  industrial  activities  such  as  cement  production,  and   the   operation   of   thermoelectrical   units   or   boilers.     These   fuel  materials   should   be   derived   from   renewable  sources,  such  as  the  case  of  vegetable  oils  or  animal  fats.     It  was  brought  to  our  attention  the  possibility  of  using  mixtures  of  palm  olein  and  #6  fuel   oil   (bunker   C)   as   fuel   for   the   operation   of   thermoelectrical   generators.     Three   aspects   must   be   considered  in  assessing  the  feasibility  of  the  proposal.   The   first   is   the   calorific   value   of   this   vegetable   oil,   which   is   38  MJ/kg.     This   quantity   is   similar   to   the  observed  value  of    40  MJ/kg   for  #6   fuel  oil.    The  second  aspect   to  be  considered   is   price   and   availability   of   palm   olein,   situations   that   need   be   analysed   in   specific   scenarios.     The   third  aspect   is   the  resulting  viscosities  of  #6  fuel  oil-­‐‑olein  mixtures.     If  viscosities  are  higher  than   values  expected  from  linear  dependence  of  the  logarithm  of  viscosity  with  composition  (vide  infra),   higher  energy  costs  would  be  involved  in  the  pumping  of  the  fuel  mixture  due  to  friction  loss.   Binary  liquid  ideal  mixtures  of  xi  mole-­‐‑fraction  composition  obey  Kendall-­‐‑Monroe  equation   [3]:   ln Φmix = x1 ln Φ1 + x2 ln Φ2 (1) where  Φ   refers   to   fluidity.  The   ideal-­‐‑mixture  condition   is  approached  when  the  molecules  of   the   components  are  similar  in  polarity,  shape  and  size  [4].    This  condition  assures  microscopic   laminar   flow  due  to  independence  of  the  sliding  process  of  the  molecular  layers,  from  the  chemical  identity   of  the  constituents.   Viscous-­‐‑flow  mechanism  of  #6  fuel  oil  –  palm  olein  mixtures. Ciencia  y  Ciencia  y  Tecnología,  27(1  y  2):  71-­‐‑76,  2011  –  ISSN:  0378-­‐‑0524 80   The  proposal   can   be   stated   that   non-­‐‑linear  dependency   of   ln  Φmix   on  x   is   expected  when   either   positive   or   negative   deviations   from   ideal   behaviour   occurs.     Experimental   observation   supports   the   proposal   [3].     For   example,   C6H6-­‐‑EtOH   mixtures   show   positive   deviations   from   Raoult’s  law,  and  this  suggests  the  same  mathematical  result  on  equation  (1),  a  result  borne  out  by   experiment.    The  opposite  is  observed  for  Cl3CH-­‐‑Et2O  mixtures.     We   present   the   rheological   behaviour   of  mixtures   of   #6   fuel   oil   and   palm   olein   and   the   compatibilty  of  the  mixtures.   II   MATERIALS  AND  METHODS   Materials.    Palm  olein  was  obtained  as  a  gift  from  Palma  Tica®  (Costa  Rica)  and  the  #6  fuel   oil  sample  used  in  this  study  was  from  the  state-­‐‑owned  petroleum  company  Recope  (Costa  Rica).     All  mixtures  of  mass  fraction  x  were  prepared  gravimetrically.   Viscometric   measurements   and   compatibility.     A   Saybolt   Furol   viscometer   was   used,   according   to  procedure  ASTM-­‐‑D88.  The  measurements  were  done  at   60,0   °C.    The   compatibility   test  was  carried  out  as  indicated  by  ASTM-­‐‑D2781.   Data   treatment.    The  1/(kinematic  viscosity)  –   composition  data  were  subjected   to  Anova   analysis   in   the   Kendall-­‐‑Monroe   equation   form   jjmix xaitycosviskinematic ∑= 0 )/1ln(   for   linear   and   quadratic  fits,  by  using  polynomial-­‐‑regression  analysis  with  the  Excel  package.   III   RESULTS  AND  DISCUSION   Macroscopic   properties.     Table   1   gives   the   kinematic   viscosities   of   the   mixtures   studied.     The   measurements  were  carried  out  at  60,0  °C.     TABLE 1 KINEMATIC VISCOSITIY OF MIXTURES OF #6 FUEL OIL AND PALM OLEIN AT 60,0 °C. Mass  fraction  of  palm  olein   Kinematic  viscosity  /  SSF   0,000   290,1   0,051   191,1   0,100   152,0   0,199   90,6   0,301   65,0   0,399   41,4   0,500   36,6   1,000   17,5   Figure  1   shows   the   correlation  of   ln   [Φmix/Φolein]  vs.  x   is  nonlinear.    Anova  analysis   shows   that  both  linear  and  quadratic  terms  are  statistically  significant  to  at  least  p  <  0,01,    r2  =  0,992.   In  analogy  to  Kendall-­‐‑Monroe  equation,  the  following  empirical  relationship  results:   ln [Φmix/Φolein] = - (2,72±0,05) + (5,6±0,3) x – (2,9±0,3) x2 (2) R.E.  LEZCANO-­‐‑GONZÁLEZ  –  J.F.  MATA-­‐‑SEGREDA   Ciencia  y  Tecnología,  27(1  y  2):  78-­‐‑83,  2011  -­‐‑  ISSN:  0378-­‐‑0524   81 Though  1/(kinematic  viscosity)  =  density/absolute  viscosity  =  density  ×  absolute  fluididty,  it   is   clear   that   density   changes   with   x   much   less   than   absolute   fluididty   does,   as   seen   from   the   density  values  for  the  two  components  at  60,0  °C:  0,89  g/cm3  for  palm  olein  and  0,97  g/cm3  for  #6   fuel  oil.    Thus,  [∂ln(1/kinematic  viscosity)mix/∂x]T  ≈   [∂lnΦmix/∂x]T.    This  means  that  one  can  use  the   inverse  of  the  kinematic  viscosity  in  place  of  exact  Φmix  values  for  the  analysis  of  the  results  of  this   work.   The   observed   positive   deviation   from   equation   (1)   indicates   that   no   additional   energy   expenditure  should  be  expected  in  the  pumping  of  these  mixtures  than  what  is  required  for  fuel  oil   alone,  a  favourable  mechanical  feature  of  the  system.   It   is   important   to   determine   the   composition   at   which   one   has   the   greatest   difference   between  the  real  system  and  the  situation  predicted  by  the  Kendall-­‐‑Monroe  equation.                                         FIGURE  2.    Effect  of  composition  on  the  fluidity  of  binary  mixtures  of  #6  fuel  oil  and  palm  olein  at  60,0  °C.     yKendall = ln Φbunker + ln (Φolein/Φbunker) x yreal = -5,58 + 5,6 x -2,9 x2 d(yreal – yKendall)/dx = 5,6 – 5,8 x - ln (Φolein/Φbunker) d(yreal – yKendall)/dx = 0 xmax = 0,48 The   above   straightforward   exercise   shows   the   best   mixture   to   contain   ∼   50   %   (m/m)   of   olein,  in  order  to  have  the  maximum  fluididty  relative  to  Kendall-­‐‑Monroe  rheology.     An  additional  aspect  to  be  considered  is  that  of  compatibility  of  the  two  components.    If  the   components   are   compatible,   there   is   assurance   that  no  phase   separation  will   occur   after  mixing.     ASTM-­‐‑2781  procedure  shows  good  compatibility  (degree  1  –  2)  for  all  mixtures  studied.   x -3 -2 -1 0 0 0,2 0,4 0,6 0,8 1 ln [Φ m ix /Φ ol ei n] Kendall-Monroe Viscous-­‐‑flow  mechanism  of  #6  fuel  oil  –  palm  olein  mixtures. Ciencia  y  Ciencia  y  Tecnología,  27(1  y  2):  71-­‐‑76,  2011  –  ISSN:  0378-­‐‑0524 82 Microscopic  considerations.    The   thermal  coefficient  of  cubic  expansion  of  a  particular  material,   pT V V ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ = 1 α ,  is  an  inverse  function  of  intermolecular  forces  and  of  how  well  molecules  are  packed   in  supramolecular  lattices  [5]:   H C vap p Δ = λ α 72 7                      (3)   where  λ  is  related  to  the  packing  of  molecules  in  the  liquid.    The  α  values  of  palm  olein  [(7,0±0,2)  ×   10-­‐‑4  K-­‐‑1]  and  of    #6  fuel  oil  [(6,90  ±0,09)  ×  10-­‐‑4  K-­‐‑1]  are  identical  [6].   The  petro-­‐‑material   is  mainly  made  up  of   long-­‐‑chain  hydrocarbons   from  C20   to  C70.    Palm   olein   triacylglyceride  molecules   (TAG)  are   smaller  objects   than   those   in     fuel  oil.     It   is   clear   that   intermolecular  attractive  forces  in  the  latter  material  must  be  somehow  greater  than  those  between   TAG,   because   the  Cn   are   long   coiled  molecules  with   large  molecular   surfaces,  whilst   TAG  have   almost  cylindrical  compact  shapes,  as  shown  by  the  space  filling  model  below  [obtained  from  the   internet  site  www.3dchem.com/molecules.asp?ID=320#].     Figure  3.    Space  filling  model  for  triacylglycerols.     The  qualitative  idea  agrees  with  the  difference  in  ΔvapH°  =  163±4  kJ/mol  (190  kJ/kg)  for  TAG   in  general   [7]  and  values   in   the  range  101,8  kJ/mol  and  192,6  kJ/mol   for  C20   -­‐‑  C38   [8].    A  value  of   apparent  ΔvapH°  =  220  kJ/kg  is  reported  for  #6  fuel  oil  [9].     We  give  the  following  interpretation  to  the  findings  discussed  in  this  work.    The  magnitude   of  intermolecular  forces  does  not  seem  to  play  the  main  role  in  this  case.   Packing  arrangement   influences  many  properties  of   liquids  such  as  density,  viscosity  and   diffusivity  [10].    The  supramolecular  configuration  in  both  “pure”  components  is  similar,  as  can  be   expected  from  the  α  values.    The  λ  parameters  are  calculated  from  equation  3  with  the  aid  from  Cp   values  reported  in  the  literature:  1,9  kJ  K-­‐‑1/kg  for  #6  fuel  oil  [9]  and  1,96  kJ  K-­‐‑1/kg  for  palm  oil  [11].     The  resulting  values  are  λfuel  oil  =  1,2  and  λolein  =  1,4.   The  difference  in  molecular  sizes  and  shapes  between  the  molecular  objects  in  TAG  and  in   #6   fuel   oil   results   in   greater   amount   of   excluded   volume   in   the   mixtures.     This   means   looser   intermolecular   packing   in   the   mixtures   than   in   the   pure   components.     Though   intermolecular   forces  are  somehow  greater  in  #6  fuel  oil,  the  looser  lattice  in  the  mixtures  renders  a  lesser  degree   of  hindrance  to  the  viscous-­‐‑flow  process,  relative  to  the  situations  of  the  two  “pure”  components.     The   observed   compatibility   of   the   mixtures   can   be   understood   in   terms   of   the   similar   dielectric  constants  and  Hildebrand  solubility  parameters  ( m vap H V HΔ ≈δ )  [12]  of  these  two  materials.     The  mean  dielectric  constant  of  vegetable  oils   is  3,1  and  a  value  of  2,6   is  accepted  for  #6   fuel  oil. From  the  ΔvapH  and  densities  indicated  above,  one  calculates  δH  =  13,0  MPa½  for  palm  olein  and  δH  =   14,6  MPa½  for    #6  fuel  oil.     R.E.  LEZCANO-­‐‑GONZÁLEZ  –  J.F.  MATA-­‐‑SEGREDA   Ciencia  y  Tecnología,  27(1  y  2):  78-­‐‑83,  2011  -­‐‑  ISSN:  0378-­‐‑0524   83 Conclusion.    The  fluidity  of  mixtures  of  #6  fuel  oil  and  palm  olein  shows  positive  deviations  from   the   Kendall-­‐‑Monroe   equation   at   60,0   °C.     The  most   fluidal  mixture   contains   48%   of   palm   olein   (m/m).    This  observation  indicates  that  use  of  this  type  of  mixtures  as  fuel  means  no  extra  energy   requirement   for   pumping   the   fuel   mixture   from   storage   reservoirs   to   combustion   chambers.     Mixtures  with  up  to  48  %  olein  (m/m)  are  compatible,  according  to  test  ASTM-­‐‑2781.   This   rheology   feature   is   thought   to   be   the   result   of   looser   packing   of   molecules   in   the   mixtures  than  in  the  “pure”  components.   IV REFERENCES [1]    Raupach,  M.  R.;  Marland,  G.;  Ciais,  P.;  Le  Quéré,  C.  ;  Canadell,  J.  G.  ;  Klepper,  G.  ;  Field,  C.  B.,   Proc.  Natl.  Acad.  Sci.  (USA)  2007,  104,  10288-­‐‑10293.     [2]   Briggs,   H.,   “50   years   on:   The   Keeling   Curve   legacy”,   BBC   News,   2   December   2007,   www.news.bbc.co.uk/1/hi/sci/tech/7120770.stm,  Downloaded  on  18  December  2008.       [3]    Glastone,  S.;  Laidler,  K.  J.;  Eyring,  H.,  The  theory  of  rate  processes,  McGraw-­‐‑Hill:  New  York,  1941,   chapter  9.     [4]    Pitzer,  K.  S.;  Brewer,  L.,  Gilbert  Newton  Lewis  and  Merle  Randall  Thermodynamics,  McGraw-­‐‑Hill:   New  York,  1961,  pp  280-­‐‑282.     [5]    Castellón-­‐‑Elizondo,  E.;  Lutz,  G.;  Mata-­‐‑Segreda,  J.  F.,  J  .  Phys.  Org.  Chem.  2006,  19,  744-­‐‑747.     [6]    α  values  were  calculated  from  the  densities  (ρ)  at  different  temperatures  as  α  =  -­‐‑  (∂lnρ/∂T)p.     [7]  Chickos,  J.  S.;  Acree,  W.  E.,  Jr.,  J.  Phys.  Chem.  Ref.  Data  2003,  32,  519-­‐‑878.     [8]  Chickos,  J.  S.;  Hanshaw,  W.,  J.  Chem.  Eng.  Data  2004,  49,  620-­‐‑630.     [9]    #6  Fuel  Oil,  Chemical  Engineering  Community,  USA.  http://www.cheresources.com/invision/   index.  php?showtopic  =  1009.    Downloaded  on  18  December,  2008.     [10]    Cahoon,  J.  R.,  Can.  J.  Phys.  2004,  82,  291-­‐‑301.     [11]   Palm   oil   properties,   Chempro,   India.     http://www.chempro.in/palmoilproperties.htm.   Downloaded  on  18  December,  2008.     [12]  Hildebrand,  J.  H.;  Scott,  R.  L.,  The  solubility  of  nonelectrolytes,  3rd  ed.,  Dover:  New  York,  1964,  pp   119  –  133.     Acknowledgement.    The  authors  wish  to  thank  Alejandro  A.  Azofeifa  (Instituto  Costarricense  de   Electricidad)  for  suggesting  this  study,  and  Bernardo  Aguilar  and  José  Duarte  (Recope,  Costa  Rica)   for   their  help   in  measuring   the  viscosity  profile  of   the  mixtures  and   the  compatibility   tests.    The   gift  of  oil-­‐‑palm  olein  from  Palma  Tica  is  recognised.