Ciencia  y  Tecnología,  27  (1  y  2):  45-­‐‑52,  2011   ISSN:  0378-­‐‑0524    THE  LEGACY  OF  VAN  DER  WAALS        J.  F.  Ogilvie*     Escuela  de  Quimica  y  CELEQ,  Universidad  de  Costa  Rica,  Ciudad  Universitaria  Rodrigo  Facio,  San  Pedro  de   Montes  de  Oca,  San  Jose  11501-­‐‑2060,  Costa  Rica;  ogilvie@cecm.sfu.ca       Recibido  17  de  marzo,  2011;  Aceptado:  10  de  diciembre,  2011     Abstract     The   physical   implications   of   the   form   and   nature   of   the   van   der   Waals   equation   of   state   are   explained.   The   relation   of   this   equation   to   so-­‐‑called   van  der  Waals   forces  and  radii   is  discussed.  The  conclusion   is  drawn  that   the   van   der   Waals   equation   of   state   is   practically   worthless   and   its   use   should  be  abandoned.     Resumen     Se   explican   las   implicaciones   físicas   de   la   forma   y   la   naturaleza   de   la   ecuación  de  estado  de  van  der  Waals.  Además,  se  discute  la  relación  entre   esta  ecuación  y   las   llamadas   fuerzas  y   radios  van  der  Waals.  Se   llega  a   la   conclusión  de  que  la  ecuación  de  estado  de  van  der  Waals  no  es  útil  y  que   no  debería  utilizarse.       Key  words:   equation   of   state,   corresponding   states,   intermolecular   forces,   weakly  bound  molecules,  van  der  Waals.     Palabras   claves:   ecuación   de   estado,   fuerzas   intermoleculares,   van   der   Waals.                 *  Corresponding  author:  ogilvie@cecm.sfu.ca   J.F. OGILVIE Ciencia  y  Tecnología,  27(1  y  2):  45-­‐‑52,  2011  –  ISSN:  0378-­‐‑0524   46     On   the   occasion   in   2010   of   the   centenary   of   Johannes   Diderik   van   der  Waals   (1837-­‐‑1923)  being  awarded  Nobel   laureate   in  physics,  Tang  and  Toennies  published  a   paean   of   praise   [1]   that   astonishingly   proclaimed   that   Dutchman’s   achievement   of   allegedly   “triggering   a   revolution   in   the   understanding   of   the   molecular   physics   of   liquids,   gases   and   their   mixtures,   and   laying   the   foundations   of   modern   thermodynamics  and  statistical  mechanics”.    Although  van  der  Waals  might  certainly   have  exerted  a  formative  influence  on  Dutch  science  and  scientists  during  his  life,  and  is   undoubtedly   mildly   important   as   an   historical   figure   in   physics,   the   validity   of   association   of   some   concepts   with   his   name   must   be   challenged:   that   objective,   a   critique  of  his  equation  of  state  and  the  validity  of   the   term  ‘van  der  Waals  molecule’   constitute  the  purpose  of  this  essay.         Despite  the  cautions  that  from  time  to  time  appear  in  the  literature  emphasizing   not   to  attach   too  great  significance   to  conclusions  drawn  from  its  application,   the  van   der  Waals  equation  of  state  maintains  a  remarkably  resilient  position  in  many  textbooks   of  general  and  physical  chemistry.  In  part  following  Duclaux  [2],  we  present  here  some   considerations   of   this   equation   and   its   implications,   after   reviewing   the   historical   development  and  related  background.         One  seeks   to  specify  completely   the  state  of  unit  quantity   (one  mole)  of  a   fluid   according  to  some  characteristic  equation,     f(p,  Vm,  T)    =    0, (1) in  which  p  =  pressure,  Vm  =  volume  per  mole  and  T  =  absolute  temperature.  According   to  the  kinetic-­‐‑molecular  theory  of  gases,  the  ideal  gas  law,   p  Vm  /  T    =    constant    =    R,   (2) is  derivable.  To  the  extent  –  considerable  excepting  extreme  conditions  of  pressure  and   temperature   –   that   a   real   gas   has   properties   resembling   those   of   an   ideal   gas,   this   equation   is   useful.   One   pursues,   however,   a   more   accurate   representation   of   the   properties   of   real   fluids   to   take   account   of   the   possibility   of   universal   liquefaction   at   sufficiently   small   temperatures,   and   other   deviations   at   large   pressures.   The   first   attempt  to  allow  for  non-­‐‑ideal  behaviour  was  made  by  Hirn  (1867)  who  wrote     p  (Vm  −  b)    =  R  T,               (3)     in  which  b   is  a  characteristic  parameter  called   the  covolume.   In  his  dissertation  at   the   University  of  Leyden  (1873),  van  der  Waals  introduced  a  second  correction  to  obtain     The  legacy  of  van  der  Waals Ciencia  y  Tecnología,  27(1  y  2):  45-­‐‑52,  2011  –  ISSN:  0378-­‐‑0524   47 (p    +  a  /Vm2  )  (Vm  − b)  =  R  T             (4)   The  correction  a   /Vm2  was  intended  to  allow  for  attractive  forces  between  molecules   in   the   gaseous   sample.   Direct   experimental   evidence   of   such   attractive   forces   between   gaseous  molecules  had  been  previously  obtained  and  recognised  by  Joule  and  Thomson   (Lord  Kelvin)  as  a  result  of  their  ‘porous-­‐‑plug’  experiment,  1853.         Interactions   of   three   classes     –     electrostatic,   inductive   and   dispersive   –     arise   between  simple  molecules  at  sufficiently  large  separations  [3];  orientational  factors  are   neglected.  The  Keesom  interaction,  an  attraction   that  arises  between   two  molecules  of   separation  R  each  having  permanent  electric  dipolar  moment  µμ,  has  this  energy,     EK    =  − 2  µμ4  /  (4π  ε0  )2  (3  R6  k  T  ) (5) A  molecule  with   a   permanent   electric   dipolar  moment   invariably   induces   an   electric   dipolar  moment  in  a  neighbouring  non-­‐‑polar  molecule  of  polarizability  α,  producing  an   attraction  known  as  the  Debye  interaction,  equal  to     ED    =  −  α  µμ2  /  (4  π  ε0)2  R6   (6) Another   interaction,  which  arises   from   fluctuating   instantaneous  dipoles   in  otherwise   non-­‐‑polar  molecules,  has  the  London  energy,     EL = − 3 I α2 / (4 π ε0)4 (4 R6 ) (7) in  which  the  like  molecules  have  first  ionization  energy  I  and  polarizability  α.  All  these   interactions  have  energies  that  signify  attraction  by  their  negative  signs,  and  that  are  of   appreciable  magnitude   for  only  small   separations,  as   indicated  by   the  dependence  R-­‐‑6   on  separation.  At  even  smaller  separations,   repulsion  becomes  more   important.  These   two  effects  are   taken   into  account   in  a  model   function   for  potential  energy  associated   with  Lennard-­‐‑Jones,   V(R) = 4 ε [ (σ/R)12 − (σ/R)6 ] ; (8) in  this  equation  ε  is  the  binding  energy  or  depth  of  the  well  of  potential  energy,  and  σ  is   the   distance   of   closest   approach   or   molecular   diameter.   As   force   is   the   gradient   of   energy,   the   force  of  attraction  has   then  a  dependence  R-­‐‑7   appropriate   to   the  attraction   energy  as  R-­‐‑6.  With  this  background,  we  proceed  to  explore  the  implications  of  the  van   der  Waals  equation  of  state.       J.F. OGILVIE Ciencia  y  Tecnología,  27(1  y  2):  45-­‐‑52,  2011  –  ISSN:  0378-­‐‑0524   48   We  examine  first  the  pressure  term.  The  correction  a/V  2  is  obtainable  [2]  on  being   guided  by  no  theory  whatsoever,  but  merely  on  developing  a  series  in  negative  powers   of  Vm  and  terminating  with  Vm-­‐‑2,   p = R T / (Vm − b) − a / Vm2 (9) What   is   the   physical   significance   of   a?  As   expressed   by  Moelwyn-­‐‑Hughes   [4]   on   the   basis  of  a  dimensional  argument,  “the  molecular  model  with  which  the  equation  of  van   der  Waals   is   consistent   is   that   of   a   system   of   incompressible   spheres,   of   diameter   σ,   which   attract   each   other   with   a   force   varying   inversely   as   the   fourth   power   of   their   distance  apart”.    As  we  see  above,  the  various  interactions  as  forces  that  arise  between   non-­‐‑polar  or  weakly  polar  molecules  all  have  dependences  according  to  R-­‐‑7,  not  R-­‐‑4,  on   separation.    As   attractive   forces  were   not   discovered   by   van  der  Waals,   and   as   these   forces   according   to  his   equation   lack   the   correct  dependence  upon  R,   it   consequently   seems   inappropriate   to   associate   collectively   the   Keesom,   Debye   and   London   interactions  with  van  der  Waals.  We   can,   for   the   same   reason,   expect   correction   term   a/Vm2   to   yield   inaccurate   results   of   calculations.   The   typical   quasi-­‐‑derivation   of   this   correction  is,  in  any  case,  most  dissatisfying,  as  the  derivation  implies  that  the  pressure   near  a  boundary  of  the  gas  is  less  than  in  the  bulk  because  of  unbalanced  forces  tending   to  pull  back  the  molecule  from  the  boundary  [5].  In  any  real  situation,  the  boundary  is   constituted  of  a  dense  material,  on  the  surface  of  which  there  are   invariably  adsorbed   layers  of  molecules  of  the  gas  providing  that  sufficient  sample  is  available;  in  that  case   the   pressure   must   increase   toward   the   boundary,   relative   to   the   bulk   gas.   The   adsorption   of   part   of   the   gas  would   cause   a   bulk   pressure   decreased   by   comparison   with   an   hypothetical   ideal   gas   that  were   not   adsorbed.   This   effect  might   perhaps   be   encompassed,   or   avoided,   in   an   alternative   derivation   of   the   corrective   term   for   pressure,   but   its   presence   until   that   achievement  makes   the   offered   derivations   seem   spurious.         Regarding  covolume  parameter  b,  its  significance  is  that  it  represents  the  average   forbidden  molar  volume  [4]  of  molecules  for  which  only  binary  collisions  are  important.   The  magnitude  of  b  is  thus  four  times  the  intrinsic  volume  of  a  mole  of  incompressible   spheres.  The  circumscribed  volume  of  a  collection  of  close-­‐‑packed  spheres  is,  however,   1.350  times  the  intrinsic  volume  of  the  spheres.  It  is  thus  entirely  feasible  for  the  volume   of  a  fluid  during  compression  to  approach,  to  become  equal  to,  and  then  to  become  less   than  b  that  is  almost  three  times  the  minimum  attainable  volume,  i.e.  the  circumscribed   volume  of  close-­‐‑packed  spheres.  Under  these  conditions,  it  would  be  necessary  to  admit   of   negative   pressures,   positive   and   negative   infinities   of   pressure,   and   even   zero   pressure  during  compression,  as  Duclaux  has  deduced  [2].  van  der  Waals,  apparently   aware  of  the  first  consequence,  above,  of  his  equation,  justified  it  by  stating  that  a  liquid   The  legacy  of  van  der  Waals Ciencia  y  Tecnología,  27(1  y  2):  45-­‐‑52,  2011  –  ISSN:  0378-­‐‑0524   49 can   support   a   negative   pressure:   this   phenomenon   has   never   been   observed.   These   difficulties,   and  others,   arise  because  of   the  nature  of   the   subtractive   correction  b,   the   covolume,   which   really   regresses   to   Hirn'ʹs   formulation.   A   covolume   is   a   common   feature   of   three   state   equations   containing   two   parameters,   those   of   van   der  Waals,   Berthelot  and  Dieterici.    To  prevent  absurd  consequences  resulting  from  the  covolume   correction,  it  is  merely  necessary  to  define  b  to  be  the  circumscribed  volume  of  the  close-­‐‑ packed  collection  of  molecules,   in  which  case  for  pressure  to  tend  to   infinity  when  Vm   approaches  b   is  physically  acceptable.    The  effects  of   ternary  collisions,  which  become   significant   at   large   pressures,   and   consequently   the   effects   of   conditions   at   large   pressures  or  densities,  are  formally  neglected  in  these  equations  of  state.       The   attraction   of   the   van   der   Waals   theory   is   such   that   the   magnitudes   of   parameters  a  and  b  of  his  equation  of  state  are  considered  constant,  even  though  that  at   least   a   varies   with   temperature   has   been   long   known   (Clausius,   1880).   To   test   the   constancy   by   numerical   calculation   is   easy:    Duclaux   [2]   presented   data   that   indicate   that   both   a   and   b   for   non-­‐‑polar  molecules   dinitrogen   and   dioxygen   vary   by   about   a   factor  two  for  a  temperature  range  of  a  similar  factor  up  to  300  K;  a  and  b  thus  vary  in   inverse   proportion   to   the   absolute   temperature.   This   effect   is   expected   as   the   resemblance   of   these   gases   to   an   hypothetical   ideal   gas   must   increase   as   the   temperature  increases  far  above  the  critical  temperature.  In  compilations  of  quantities  a   and  b  for  various  substances,  for  instance  in  editions  of  standard  handbooks  [6],  there  is   indication  of  neither   the   temperature   for  which   the  stated  values  are  appropriate,  nor   even   that   a   dependence   on   temperature   exists;   users   are   thus   exposed   to   significant   error.  For  instance,  for  dioxygen  at  15  MPa  and  423  K  -­‐‑-­‐‑    neither  extreme  conditions  nor   near  the  critical  point,  with  standard  values  of  a  and  b  the  correction,  relative  to  an  ideal   gas,  for  pressure  even  has  an  incorrect  sign.           As   the   covolume   parameter   is   generally   taken   to   be   related   to  molecular   size,   further  complications  appear.  According   to  certain  questionable  assumptions,  one  can   pragmatically  derive  molecular  radii,  or  radii  of  atoms  or  groups  of  atoms  in  molecules;   compilations  of   so-­‐‑called  van  der  Waals   radii   exist   [7].   In   the   singular,   the   specifying   term   implies   an   effective   radius   constituting   half   the   distance   of   closest   approach   between   like   atoms   deemed   not   covalently   bonded.   One   might   attempt   formally   to   calculate  these  radii  from  covolume  parameter  b,  but  to  consider  molecules  to  become   smaller   as   temperature   increases   would   be   then   necessary.   In   fact,   just   the   reverse   occurs,   as   molecules   enlarge   slightly   with   increasing   temperature   because   the   occupancy   of   excited   vibrational   states   becomes   thermally   enhanced,   with   correspondingly  increased  mean  amplitudes  of  oscillation.  Above  the  dissociation  limit   of  a  diatomic  molecule,  the  effective  radius  of  each  separate  atomic  fragment  decreases   with   increasing   temperature,   but,   for   two   interacting   strongly   bound   diatomic   OGILVIE: The legacy of van der Waals Ciencia y Ciencia y Tecnología, 27(1 y 2): 45-52, 2011 – ISSN: 0378-0524 50 molecules   within   a   weakly   bound   tetratomic   molecule,   the   effective   radius   of   each   fragment  again  increases  with  increasing  temperature.  The  association  of  van  der  Waals   with   these  non-­‐‑bonded  radii   is  hence  unjustified;  neither  his  equation  of  state  nor   the   principle  of   corresponding  states  provides  direct  evidence   for   the  existence  of  weakly   bound  molecules,   which   are   adequately   characterised   in   contemporary   spectrometric   experiments.    The  association  of  van  der  Waals  with  these  radii  because  of  the  attractive   (and   repulsive)   forces,  which  are   responsible   for   the  proximity  with  which  molecules   can  approach  one  another,   is   equally   spurious.    Various  weakly  bound  molecules  are   characterised,  with  4He2  and  Ar2  as  diatomic  instances  involving  atomic  fragments,  and   (HF)2   involving  diatomic   fragments;   their  properties  and  characteristics  are  so  diverse   as   to   lack  much   in   common  other   than   their   small   energies  of  dissociation   into  either   atoms   or   strongly   bound  molecules.     As   the   energies   of   dissociation   of   the   strongest   ‘hydrogen  bonds’  are  not  much  less   than  those  of  bonds  considered  ordinary,  such  as   that  of  diiodine,  I2  ,  in  its  electronic  ground  state,  there  is  nearly  a  continuous  gradation   of  bonds  from  the  weakest,  in  4He2,  to  the  strongest,  in  CO,  for  diatomic  molecules  for   instance.     There  has   been  proffered  no   suggestion   that   van  der  Waals   ever  discussed   such  a  diversity,  nor  that  his  understanding  of  their  molecular  physics  exceeded  that  of   Joule   and   Kelvin   who   originated   an   experimental   proof   of   the   existence   of   intermolecular   forces   in   a   gaseous   context;   it   is   significant   that   the   Joule-­‐‑Thomson   coefficient,   (∂T/∂p)H,   is   the   only   thermodynamic   function   of   a   real   gas   that   fails   to   approach  the  corresponding  function  of  an  ideal  gas  as  the  gaseous  density  approaches   zero.   Rowlinson  stated  [2]  in  1958,  “The  best  known  equation  of  state  ....  is  that  of  van   der  Waals,   and   for  many  years   the  principle   [of   corresponding   states]  was   associated   solely   with   this   equation”.     According   to   this   principle,   pressure,   volume   and   temperature  are  expressed  in  terms  of  ratios  with  their  respective  values  at  the  critical   point,  so  pr  =  p  /  pc,  Vr  =  Vm  /  Vm  c  and  Tr  =  T  /  Tc  ,  and  the  compression  factor  Z  =  P  Vm  /RT   is  the  same  for  all  gases,  but  differing  markedly  from  unity  –  becoming  as  small  as  0.2   near   the   critical   temperature   [8].     Guggenheim   stated   [2]   in   1945,   “The   principle   of   corresponding  states  may  safely  be  regarded  as  the  most  useful  by-­‐‑product  of  the  van   der  Waals  equation  of  state.  Whereas  this  equation  of  state   is  nowadays  recognised  to   be   of   little   or   no   value,   the   principle   of   corresponding   states,   correctly   applied,   is   extremely   useful   and   remarkably   accurate”.   Contrary   to   popular   belief,   the   van   der   Waals  equation  of  state  fails  to  establish  the  physical  reality  of  corresponding  states  [2],   because  it  leads  to  invalid  mathematical  definitions  instead  of  physical  definitions.  The   mathematical   definitions   are   contained   in   these   well   known   relations   for   the   critical   parameters,  obtained  on  differentiation:             Vm  c    =    3  b,                       (10)   Ciencia  y  Tecnología,  27  (1  y  2):  45-­‐‑52,  2011   ISSN:  0378-­‐‑0524   Ciencia y Ciencia y Tecnología, 27(1 y 2): 45-52, 2011 – ISSN: 0378-0524 51       Tc    =    8  a  /  (27  b  R),           pc    =    a  /  (27  b2  )     Here   is  exposed  an   internal  contradiction  of   the  van  der  Waals  equation:  whereas   the   minimum  circumscribed  volume  of  a  collection  of  spheres  is  0.337  b,  the  critical  volume   is  nine  times  as  great,  an  unreasonably  large  factor.  These  relations  would  be  acceptable   if   parameters   a   and   b   were   independent   of   temperature.   Even   when   a   and   b   for   a   temperature  slightly  greater  than  the  critical  point  are  inserted  into  these  relations.  the   resulting  critical  parameters  for  dinitrogen  are  inaccurate  [2].  If  this  ‘law’  were  true,  the   critical  ratio,           pc  Vm  c  /  R  Tc    =    3/8               (11)     would   be   the   same   for   all   gases,   whereas   this   ratio   varies   between   1/5   and   1/3   for   common  gases  [8].    In  any  case,  all  equations  of  third  degree  in  V,  as  is  that  of  van  der   Waals,   yield,   if   they  deviate  not   too   severely   from  experience,   a  mathematical   critical   point.  All  equations  with  two  parameters,  such  as  a  and  b,  yield  reduced  variables  and   corresponding  states.  There  is  hence  no  special  virtue  of  the  van  der  Waals  equation  as   far  as  corresponding  states  are  concerned:   it   leads  to  nonsensical  situations  because  of   the  abstract  nature  of  critical  parameters  determined  from  a  and  b.         Barker  and  Henderson  stated  [9],  "ʺIt   is  a  tribute  to  the  insight  of  van  der  Waals   that,   in   the   nineteenth   century,   he   was   able   to   give   an   essentially   correct   physical   description  of  the  liquid  state,  and  that  much  of  the  recent  progress  has  been  to  put  his   ideas  on  a   rigorous  mathematical  basis"ʺ.    They   then  proceeded   to  derive   some  useful   results  with  which  to  prove  their  point  [9],  but  they  achieved  these  results  by  imposing   on   their   systems   the   6-­‐‑12  potential-­‐‑energy   function  of  Lennard-­‐‑Jones,   as   in   formula   8   above,  whereas  the  van  der  Waals  equation  is  consistent  with  an  inverse  fourth-­‐‑power   attractive   force   [4].   This   approach   seems   to   be   an   instance   of   what   Duclaux   [2]   contended  when   he   stated   that   a  mystical   atmosphere   surrounds   the   van   der  Waals   theory  such  that  men'ʹs  eyes  are  closed  to   the  manifest  errors  and   inadequacies  of   this   equation  of  state.  As   it  expresses  or  verifies  no  single   theory,  but   is   instead  consistent   with  many  theories,  it  is  possible  to  read  into  this  equation  diverse  properties  and  hence   to  be  misled  as  to  its  significance.         In  summary,  because  of   its  demonstrated   faults,   the  van  der  Waals  equation  of   state,   for   both   practical   and   pedagogical   purposes,   “is   of   little   or   no   use”,   after   Guggenheim.   It   can   of   course   be   used   merely   as   an   interpolation   formula   for   moderately   accurate   calculations   of   pressure   within   a   limited   range   at   a   particular   temperature   for   which   parameters   a   and   b   are   optimal,   but,   for   this   purpose,   other   OGILVIE: The legacy of van der Waals Ciencia y Ciencia y Tecnología, 27(1 y 2): 45-52, 2011 – ISSN: 0378-0524 52 empirical   equations   of   state   yield   superior   results;   for   instance   in   the   vicinity   of   the   critical  point,  the  Dieterici  equation  of  state  is  remarkably  accurate  and  “is  the  best  all-­‐‑ round   analytic   two-­‐‑constant   equation   of   state”   [3].   Never   having   had   any   sound   theoretical   foundation,   the   van   der   Waals   equation   must   be   considered   only   an   historical  relic.   In  agreement  with  Duclaux  [2],  we  conclude  that  this  equation  of  state   can   be   entirely   abandoned,   without   regret.     During   the   past   sixty   years,   numerous   papers   on   the   van   der   Waals   equation   of   state,   mostly   alleging   some   pedagogical   significance,  appeared  but  can  likewise  be  ignored  as  mere  distraction.    The  association   of   weakly   bound   molecules   and   of   forces   with   dependence   R-­‐‑7   on   intermolecular   distance  with  the  name  van  der  Waals  is  equally  unjustifiable  and  worthy  of  abandon.     Tang  and  Toennies  [1]  noted  that  the  number  of  publications  that  mention  the  name  van   der  Waals  in  the  title,  abstract  or  key  words  is  currently  about  2000  per  annum;  in  their   vast  majority   these  papers  refer  not   to   the  worthless  equation  of  state  nor  even  to   the   separate   and   worthy   principle   of   corresponding   states,   but   rather   to   van   der   Waals   forces  or  molecules  for  which  there  is  at  most  only  a  superficial  basis  to  associate  with   van  der  Waals  the  physicist.       References       1   Tang,  K.-­‐‑P.;  Toennies,   J.   P.,  Angewandte  Chemie   (international   edition),  2010,  49,   9574  –  9579     2   Duclaux,  J.,  Journal  de  Chimie  Physique,  1967,  64,  1614–1678     3   Hirschfelder,  J.  O.;  Curtiss,  C.  F.;  Bird,  R.  B.,  Molecular  Theory  of  Gases  and  Liquids,   Wiley:  New  York,  NY  USA,  1961,  p.  987  -­‐‑  990.   4   Moelwyn-­‐‑Hughes,  E.  A.,  Physical  Chemistry,  2a  ed.,  Pergamon:  Oxford,  UK,  1964,   p.  594   5   Tyler,  F.,  Intermediate  Heat,  Arnold:  London,  UK,  1955,  p.  127   6   for   instance,   Handbook   of   Chemistry   and   Physics,   forty-­‐‑fifth   edition,   Chemical   Rubber  Publishing  Co.,  Cleveland,  OH  USA,  1964;  Handbook   of  Chemistry,   tenth   edition,   McGraw-­‐‑Hill,   New   York,   NY   USA,   1961;  American   Institute   of   Physics   Handbook,   second   edition,   McGraw-­‐‑Hill,   New   York,   NY   USA,   1963,   and   their   subsequent  editions   7   for   instance,   Harvey,   K.   B.;   Porter,   G.   B.,   Introduction   to   Physical   Inorganic   Chemistry,  Addison-­‐‑Wesley:    Reading,  PA  USA,  1963,  p.  245-­‐‑247     8   Moore,  W.  J.,  Physical  Chemistry,  fourth  edition,  Prentice-­‐‑Hall,  Englewood  Cliffs,   NJ  USA,  1972,  p.  21   9   Barker,  J.  A.;  Henderson,  D.,  Journal  of  Chemical  Education,  1968,  45,  2  –  5