Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ doi:10.5194/hess-14-1125-2010 © Author(s) 2010. CC Attribution 3.0 License. Hydrology and Earth System Sciences The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California E. P. Maurer1, H. G. Hidalgo2, T. Das3, M. D. Dettinger4,3, and D. R. Cayan3,4 1Civil Engineering Dept., Santa Clara University, Santa Clara, CA, USA 2Escuela de Fı´sica, Universidad de Costa Rica, San Jose´, Costa Rica 3Scripps Institution of Oceanography, La Jolla, CA, USA 4US Geological Survey, Water Resources Division, La Jolla, CA, USA Received: 3 February 2010 – Published in Hydrol. Earth Syst. Sci. Discuss.: 12 February 2010 Revised: 18 June 2010 – Accepted: 21 June 2010 – Published: 30 June 2010 Abstract. Three statistical downscaling methods were ap- plied to NCEP/NCAR reanalysis (used as a surrogate for the best possible general circulation model), and the down- scaled meteorology was used to drive a hydrologic model over California. The historic record was divided into an “observed” period of 1950–1976 to provide the basis for downscaling, and a “projected” period of 1977–1999 for as- sessing skill. The downscaling methods included a bias- correction/spatial downscaling method (BCSD), which relies solely on monthly large scale meteorology and resamples the historical record to obtain daily sequences, a constructed ana- logues approach (CA), which uses daily large-scale anoma- lies, and a hybrid method (BCCA) using a quantile-mapping bias correction on the large-scale data prior to the CA ap- proach. At 11 sites we compared three simulated daily flow statistics: streamflow timing, 3-day peak flow, and 7-day low flow. While all downscaling methods produced reasonable streamflow statistics at most locations, the BCCA method consistently outperformed the other methods, capturing the daily large-scale skill and translating it to simulated stream- flows that more skillfully reproduced observationally-driven streamflows. 1 Introduction As climate change science matures and is better able to es- timate the regional magnitudes of potential climate change, estimates of local and regional impacts to the resources at risk are of increasing interest (IPCC, 2007a). As for much of the globe, western United States (US) water resources, the Correspondence to: E. P. Maurer (emaurer@engr.scu.edu) focus of this study, are particularly at risk, which has inspired a plethora of recent studies aimed at estimating potential im- pacts to hydrology and water resources systems (Barnett et al., 2008; Cayan et al., 2008; Maurer, 2007; Vicuna et al., 2007). One common issue facing all regional assessments of cli- mate change impacts is that the scale of general circulation model (GCM) outputs are at too spatially coarse a scale for direct use in impact models. Regional studies, such as those examining hydrologic impacts of climate change, thus rely on spatial downscaling to translate the large-scale climatic shifts projected by GCMs to scales more representative of local areas of interest (Christensen et al., 2007). The recent availability of large databases of raw GCM out- puts in a consistent format (Meehl et al., 2007) has facilitated the use of multiple GCMs and greenhouse gas emissions sce- narios in impact studies. The greatest value from studies of multiple GCM runs is that model-to-model, scenario-to- scenario, and even chaotic realization-to-realization uncer- tainties in the physical response of the climate system to changing greenhouse gas concentrations, the primary sources of uncertainty in climate impacts analysis (Fowler and Ek- stro¨m, 2009), can be quantified to some degree (Hawkins and Sutton, 2009). Furthermore, the skill of a multimodel ensemble consistently outperforms any individual model for detection and attribution studies (Brekke et al., 2008; Gleck- ler et al., 2008; Pierce et al., 2009). To consider many future projections of climate in a regional impacts study requires a downscaling procedure that is computationally very effi- cient. This generally limits these studies to using statistical downscaling techniques, where some large-scale signal is re- lated statistically to local climate, as opposed to regional cli- mate simulations, where a dynamical model of regional cli- mate is used to simulate local climate responses to the global Published by Copernicus Publications on behalf of the European Geosciences Union. 1126 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California projected changes. Past studies generally have found that the differences between GCMs is much greater than the uncer- tainty in downscaling techniques (Fowler et al., 2007). While projected changes in long-term mean water supply may have dire consequences for society (IPCC, 2007b; Oki and Kanae, 2006; Shen et al., 2008), changes in the fre- quency of extreme events are also of critical concern (Katz et al., 2002), especially for regional hydroclimate (Leung et al., 2004). Most climate projections suggest increases in the frequency of temperature and precipitation extremes, both at the monthly level (Benestad, 2006) and at the daily (and sub- daily) level (Kharin et al., 2007). When downscaling from GCM-scale climate simulations to regional scales to study hydrologic impacts, the most desirable downscaling meth- ods have the ability to translate the local changes in climatic extreme events simulated by GCMs to the local scale needed by hydrological models . While dynamic downscaling, using a regional climate model (RCM) driven at the boundary by a GCM, has been used in the western US to produce physically realistic projections of changes in hydrologic extremes (Kim et al., 2002; Snyder and Sloan, 2005), these types of mod- els are still too computationally intensive to be applied to a large ensemble of GCM output to characterize uncertainties associated with inter-GCM variability and different emission scenarios. For this reason, more computationally efficient statistical downscaling approaches will continue to serve as the methodological workhorse for downscaling ensembles of long climate simulations. Statistical methods, building statistical relationships be- tween GCM-scale climate features and fine scale climate and applying those to future projections, have been more widely applied than dynamical model downscaling in studies of hy- drologic impacts of climate change over the western United States (Christensen and Lettenmaier, 2007; Maurer et al., 2007; Payne et al., 2004; Wood et al., 2004). In most ap- plications the focus has been on monthly, seasonal or annual hydrologic changes and generally only monthly GCM out- put was used. Some efforts have used daily GCM output to study extremes in this region (e.g., Dettinger et al., 2004), though this approach has generally been to downscale GCM output directly to specific weather stations. To character- ize both projected seasonal and extreme changes for larger watersheds or over continental areas, a downscaling method should have the ability to generate gridded fields of down- scaled daily climate, to capture the spatial structure of cli- mate features. To achieve this using daily GCM output was a motivation for the development of the constructed analogues (CA) approach (Hidalgo et al., 2008). In a prior effort (Maurer and Hidalgo, 2008) the CA ap- proach was contrasted with the bias-correction/spatial dis- aggregation (BCSD) statistical downscaling approach, with each applied over the western US for downscaling large- scale observationally-derived reanalysis data as a surrogate GCM. The methods take different approaches to downscal- ing daily extreme precipitation and temperature. CA down- scales each day’s output from the GCM simulation, captur- ing projected changes in daily weather events that sum to- gether to reflect long-term climate changes, while BCSD works with GCM monthly output, then randomly selects a month from the historical record and rescales its daily pre- cipitation and temperature to match the projected monthly values. Each has the ability to downscale to a gridded field over a wide region, maintaining spatial correlations of driv- ing hydroclimatic conditions that drive hydrologic impacts. Wood et al. (2004) found the BCSD method performed well when compared to several statistical and dynamic downscal- ing methods in the context of assessing hydrologic impacts. The ability of the CA method to exhibit considerable skill of daily precipitation and temperature statistics has also been demonstrated (Hidalgo et al., 2008). Both methods have been widely used in regional studies in the United States and glob- ally (Barnett et al., 2008; Cayan et al., 2009; Das et al., 2009; Girvetz et al., 2009; Hayhoe et al., 2007; Maurer et al., 2009). Both methods are capable, to some degree, of capturing projected changes in extremes. They have been shown to produce similar downscaling skill for many measures of tem- perature and precipitation extremes (Maurer and Hidalgo, 2008). In that study, both CA and BCSD exhibited lim- ited skill, attributed to substantial large scale precipitation biases, for both wet and dry daily precipitation extremes and the difference between the methods was not significant. Sta- tistically significant differences were apparent, however, for some measures, notably that CA demonstrated better skill for downscaling cold-season low temperature extremes and warm season high temperature extremes. This illustrated the ability of CA to successfully translate large-scale daily skill to a fine scale, where by contrast, the BCSD method, using the assumption that climatological intra-monthly variability does not change, showed lower skill. There were several im- portant questions raised by this prior study, which are the focus of this paper: 1. Is there any difference in the hydrology simulated by climate downscaled with these methods? 2. For extreme streamflow measures, do the downscaling approaches produce different results? 3. Are there opportunities to combine the best attributes of the methods to improve downscaling performance? Ultimately, the goal of this study is to address question 3, by identifying, testing, and developing an improved statistical downscaling method capable of skillfully downscaling ex- treme hydroclimate, while being applied at regional to conti- nental scales. To do this we refine the prior analysis in Mau- rer and Hidalgo (2008) to evaluate how differences in the downscaling approaches propagate through the hydrologic system, and to determine whether improvements in down- scaling methods, especially in the context of simulating hy- drologic extremes, may be possible. Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 1127 2 Methods and data The approach for this study follows that of Maurer and Hi- dalgo (2008), in which National Center of Environmental Prediction and the National Center of Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996) was used as a surrogate for a General Circulation Model (GCM) output, as others have done (e.g., Widmann et al., 2003). The bene- fit of using reanalysis rather than GCM output is that biases will be expected to be lower, since atmospheric observations are assimilated in the reanalysis framework. In addition, the data assimilation process produces year-to-year and day-to- day correspondence to observed climate and weather that an unconstrained GCM would not, making it more defensible to compare downscaling performance against observations. We downscale the reanalysis daily and monthly precipitation and temperature using different techniques, and use the down- scaled data to drive a hydrologic model. The hydrologic model skill is evaluated by comparing these simulations to the hydrologic model output produced by driving the hydro- logic model directly with the gridded observed precipitation and temperature of Maurer et al. (2002). Since one of the downscaling methods, BCSD, uses random daily sequences that are not connected to observed daily meteorology, statis- tics typically used for hydrologic model performance, such as root mean square error or correlation, which assume ob- served and simulated sequences to correspond to the same events, are not used. Rather, we opt for statistical tests that assess whether the flows produced with downscaled data have the same statistical characteristics as those driven by ob- served meteorology. Results are compared primarily using a 2-sample Kolmogorov-Smirnov (KS) test (Wilks, 2006) at a 0.05 significance level, with other tests applied selectively as discussed in Sect. 3.2 below. 2.1 Reanalysis as a surrogate GCM NCEP/NCAR reanalysis (Kalnay et al., 1996) data include daily and monthly precipitation and temperature on a T62 Gaussian grid (approximately 1.9◦ square), a resolution com- parable to recent GCMs. Reanalysis is often held up as an example of the best possible historical GCM output (Reich- ler and Kim, 2008), which makes it appropriate for use in this study, as the focus is on how downscaling approaches distinguish themselves in the presence of large-scale skill. As noted by Maurer and Hidalgo (2008), because reanal- ysis temperature is strongly connected to observations, the comparisons of temperature skill will reflect differences al- most exclusively in the downscaling techniques. However, because precipitation observations are not assimilated into reanalysis estimates, the intercomparison will reflect differ- ences between the downscaling methods, plus influences of the reanalysis precipitation biases and errors. The precipita- tion and temperature daily variability in reanalysis has been shown to be realistic in many locations in the western US (Widmann and Bretherton, 2000), and so the existence of skill in daily statistics of large-scale climate model output (in this case, reanalysis) will be a major factor potentially distin- guishing the downscaling methods compared in this study. Following Maurer and Hidalgo (2008), we divide the sec- ond half of the 20th century into two periods, with 1950– 1976 representing “observations” used as the sample cat- alog from which model estimates are derived, and 1977– 1999 “projections” for which the model estimates are de- rived and verified upon. The later period exhibits small but statistically significant differences in both temperature and precipitation compared to the early period, with 1977–1999 being generally wetter and warmer over the study domain. While there are documented climatic drivers that could ex- plain this difference, such as a 1976/77 shift in the Pacific Decadal Oscillation phase (Mantua and Hare, 2002), there are also changes in the sources of observations assimilated in the NCEP/NCAR reanalysis beginning in 1979 (Kistler et al., 2001). These differences provide the opportunity to as- sess the performance of the downscaling techniques under a climate that, while not dramatically different, is statistically significantly different. A more robust assessment of the comparative skill of the downscaling methods studied here could be designed by ran- domly assembling different sets of years for training the methods and for validation, and employing a cross-validation or bootstrapping method to assess skill (e.g., Feddersen, 2003; Feddersen et al., 1999; Li et al., 2010). For this study, the two periods were intentionally selected to be observed se- quences of years that differ significantly in both temperature and precipitation, with the intention of creating a validation condition that could highlight differences between the meth- ods and to explore the potential for improving the methods. 2.2 Downscaling techniques The two primary downscaling techniques used in this study are the constructed analogues (Hidalgo et al., 2008; van den Dool, 1994) and bias correction and spatial downscaling (BCSD, Wood et al., 2004). These are described and con- trasted in detail by Maurer and Hidalgo (2008). In general, BCSD corrects for large scale biases using coarse-resolution model output (from reanalysis or a GCM) and observations, and then interpolates the bias-corrected anomalies onto a fine-scale surface of observations. The CA technique be- gins with a library of observed daily coarse-resolution and corresponding high resolution climate anomaly patterns of the variable to be downscaled, with each day’s library com- piled from observations within ±45 days of the day to be downscaled (Hidalgo et al., 2008). To downscale each day, a subset of the 30 patterns (predictors) with the clos- est similarity to the simulated anomalies are found from the coarse-resolution library. A linear combination of the coarse-resolution version of the predictors is used to produce a coarse-resolution analogue, and the downscaled anomaly www.hydrol-earth-syst-sci.net/14/1125/2010/ Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 1128 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California is produced by applying the same linear combination to the 30 corresponding fine-scale library patterns. The most im- portant distinction between the two methods is that by using daily reanalysis (or GCM) output CA retains the daily se- quencing of weather events from the coarse resolution, while in BCSD only monthly reanalysis averages are used, with daily patterns reconstructed by randomly resampling a his- toric month and scaling its daily precipitation and tempera- ture values to match the monthly projected values. Where a climate model exhibits skill in simulating daily variabil- ity, CA would in theory be capable of capturing that skill, while BCSD would reflect historical intra-month variability. Thus, for daily statistics, the two methods will be expected to distinguish themselves only inasmuch as the large-scale climate model exhibits skill at the daily time scale. Another distinction between BCSD and CA has been observed in ar- eas near coasts and other areas with sharp climate gradients at a scale much finer than the large-scale climate model output being downscaled. While BCSD reproduces climatological patterns of precipitation and temperature, projected changes tend to be smooth spatially. CA by contrast captures changes in day-to-day variability, which can evolve differently than the large-scale forcing, and thus CA can produce sharper spa- tial gradients of precipitation and temperature changes than BCSD. A second distinction between CA and BCSD that bears on the analysis that follows is that CA builds relationships be- tween large-scale climate anomalies and fine-scale anomalies based on observations, and then applies those relationships to large-scale reanalysis (or GCM) anomalies. BCSD first bias corrects the large scale monthly reanalysis data, using a quantile-mapping approach (Panofsky and Brier, 1968), so that for each month there is a statistical match (for the ob- served period) for all statistical moments to those of large- scale observations, and the bias-corrected monthly data are then spatially downscaled. The implication of this is that while CA accounts for potential biases in the mean by using anomalies, higher order biases in reanalysis spatial or tem- poral variability feed directly into the CA downscaled results in ways that BCSD explicitly corrects and avoids. 2.3 Hydrologic modeling To assess the ability to downscale to the watershed scale, daily downscaled meteorology is used to drive the variable infiltration capacity (VIC) hydrologic model (Cherkauer et al., 2003; Liang et al., 1994). VIC is a spatially distributed hydrologic model that solves the energy and water budgets at the land surface. It has been widely applied in forecast- ing and climate change analyses on spatial scales ranging from watershed to continental areas (Abdulla et al., 1996; Maurer, 2007; Maurer and Lettenmaier, 2003; Nijssen et al., 1997; Wood et al., 2002). In this study, we apply the VIC model at the same resolution (1/8 degree, approximately 12 km) and with the same parameterization as was used in 1 Figure 1. Location map of the 11 streamflow gauges listed in Table 1.2 3 4 Fig. 1. Location map of the 11 streamflow gauges listed in Table 1. several prior studies of the area (Barnett et al., 2008; Cayan et al., 2008). Prior studies have assessed the VIC model per- formance (with the same parameterization as in this study), comparing observed flows with those simulated by VIC be- ing driven by the same gridded observed meteorology as used in this study. Maurer et al. (2007) used four of the sites used in the current study, and found observed flows were well simulated, with biases below 10%. The VIC model out- put is processed through a stream routing network following Lohmann et al. (1996), which is used to generate simulated flow at the stream gauge locations listed in Table 1 and shown on Fig. 1. These stream gauges are chosen to represent wa- tersheds having much of their elevations above 1200 m, and thus being dominated by snowmelt (with the exception of the Consumnes, which has a smaller fraction of high elevation area). 3 Results and discussion Large scale skill in reanalysis temperature data is well es- tablished, since observations of temperature are assimilated. This skill has been demonstrated for monthly data as well as for daily statistics. While precipitation is less well sim- ulated in reanalysis, being model output rather than assimi- lated data, some skill is evident. We summarize below the Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 1129 Table 1. Streamflow gauges included in this study. No. Gauge Name Average Elevation, m 1 SHAST Sacramento River at Shasta Dam 1480 2 SAC B Sacramento River at Bend Bridge 1310 3 OROVI Feather River at Oroville 1560 4 NF AM North Fork American River at North Fork Dam 1530 5 FOL I American River at Folsom Dam 1340 6 CONSU Cosumnes River at Michigan Bar 640 7 PRD C Mokelumne River at Pardee 1580 8 DPR I Tuolumne River at New Don Pedro 1760 9 LK MC Merced River at Lake McClure 1810 10 MILLE San Joaquin River at Millerton Lake 2120 11 KINGS Kings River – Pine Flat Dam 2200 ability to recover fine scale precipitation and temperature statistics from the large-scale reanalysis, assess how the dif- ferences in downscaling skill affect hydrology, and develop a method for combining positive attributes of the two methods to improve downscaling skill. 3.1 Downscaling meteorology for assessing hydrologic impacts Monthly and daily skill for downscaling precipitation and temperature using the two downscaling methods were ana- lyzed in a prior study (Maurer and Hidalgo, 2008), which forms the basis for the current study. Monthly downscaling skills for CA and BCSD were found in that study to be com- parable, as were their skill levels for daily extreme precipi- tation amounts (which was generally low for both methods, reflecting the lack of skill in precipitation simulation at the large native reanalysis scale). However, CA demonstrated better skill at some locations in downscaling some of the daily statistics, such as sequences of wet and dry days, and high and low temperature extremes, where the large-scale re- analysis data contain greater skill. While correlations were higher for CA than for BCSD for some variables, correlation analysis is unable to pick up sys- tematic biases in the large-scale data. For example, while Maurer and Hidalgo (2008) show comparable correlations with observations for both CA and BCSD downscaled re- analysis for monthly, daily, and extreme wet and dry precipi- tation amounts, Fig. 2 reveals that both methods produce bias in the downscaled precipitation intensity (the average rainfall rate on rainy days, defined as days with non-zero precipita- tion). Focusing on regions with high observed precipitation intensity, especially January in the Pacific Northwest (PNW) and the Sierra Nevada in California, two features emerge. Most notably, CA shows a large negative bias in precipita- tion intensity in California, and a positive bias in the PNW. This bias in downscaled CA precipitation intensity in re- gions with relatively low precipitation is similar to the well- documented “drizzle” bias typical in GCMs (Iorio et al., 2004; Mearns et al., 1995), where weak precipitation events are overly common. Figure 3 illustrates that while reanaly- sis produces average precipitation intensities (for a grid point over central California) that appear reasonable, the frequency of occurrence of events at the lowest intensities is oversim- ulated. Approximately 40% of the daily January observa- tions (from Maurer et al. (2002) aggregated to the Reanalysis grid resolution) show zero precipitation (Fig. 3, center panel, where the ”OBS” line intersects the ordinate at a value of 0.4), while all days in the reanalysis have some precipitation (same panel, the dashed line never intersects the ordinate). At higher precipitation intensities there is a similar bias, with observed data indicating approximately 1% of daily values above 9 mm, while Reanalysis shows 4% of daily precipita- tion above this level and 1% of daily precipitation above 16 mm. By working with anomalies, CA effectively removes the biases in Reanalysis mean precipitation and mean tempera- tures. However, it is evident from the biases in precipitation intensity that, especially in light of our interest in hydrologic extremes, that accounting for mean biases at the large scale is inadequate. We introduce here a third downscaling ap- proach, by combining the initial large-scale bias correction step of BCSD prior to applying the CA method. We refer to this approach as BCCA. The bias correction employed in BCCA is conceptually identical to that in BCSD, using the same quantile mapping approach. However, rather than applying this to monthly precipitation and temperature, the quantile mapping is used for all daily (precipitation, maximum and minimum temper- ature) values within each month. For example, all daily pre- cipitation observations (aggregated to the reanalysis spatial scale) for all Januarys in the 27-year “observed” period are lumped into one pool to create a distribution of daily precip- itation observations for January of n= 27×31= 837 days. The pool of n daily observed precipitation values is then www.hydrol-earth-syst-sci.net/14/1125/2010/ Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 1130 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 30 1 Figure 2. Precipitation intensity in mm/d for four selected months for gridded observations 2 (OBS, left panels), and the difference between downscaled CA and OBS (second column), 3 between BCSD and OBS (third column), and BCCA and OBS (right panels). 4 Fig. 2. Precipitation intensity in mm/d for four selected months for gridded observations (OBS, left panels), and the difference between downscaled CA and OBS (second column), between BCSD and OBS (third column), and BCCA and OBS (right panels). Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 1131 31 1 Figure 3. Cumulative distribution function (CDF) for daily precipitation for January at 2 Reanalysis grid point located at 37.1422°N, 110.625°W. Reanalysis is compared to gridded 3 observations aggregated to reanalysis scale. Left panel shows entire CDF, while center panel 4 shows only daily precipitation values below 1 mm, and right panel shows precipitation over 9 5 mm/d. 6 7 Fig. 3. Cumulative distribution function (CDF) for daily precip- itation for January at Reanalysis grid point located at 37.1422◦ N, 110.625◦ W. Reanalysis is compared to gridded observations aggre- gated to reanalysis scale. Left panel shows entire CDF, while center panel shows only daily pr cipitation v lues below 1 mm, and right panel shows precipitation over 9 mm/d. sorted, and each day is ranked, as in BCSD, with a quantile of rank/(n+1), and assembled into a cumulative distribution as in Fig. 3. Daily January precipitation values for the large- scale model output (reanalysis) is similarly arranged into a cumulative distribution. Similar pairs of distributions are prepared for all 12 months. The bias step is completed by using these relationships for each day in the reanalysis time series, where the precipitation value is converted to a quan- tile using the cumulative distribution for reanalysis, and that quantile is then drawn from the observed cumulative distri- bution to obtain a new, bias-corrected precipitation value for that day. For example, if reanalysis simulates a very small precipitation amount that is exceeded 90% of the time (for that month), and observations show 30% of the days with no precipitation, the small amount of reanalysis precipitation will be re-mapped to a value of zero. In this way, the bias- corrected daily data will match the observations for the num- ber of rainy days and the average rainfall intensity (for the observed period). Finally, in BCCA since all biases are ex- plicitly corrected, the constructed analogues are then devel- oped on absolute values rather than anomalies, which con- trasts with the use of anomalies in the original CA. Since the biases in reanalysis temperatures are much smaller, in a rel- ative sense, than precipitation biases, the discussion below focuses on bias correction of precipitation. While the bias correction included with BCCA forces the cumulative distribution function to match observations for the historical (observed) period, some biases due to the downscaling methods remain. Figure 2 shows the compari- son of BCCA to observations, after downscaling to the 1/8 degree spatial resolution. The high bias in precipitation in- tensity in the PNW was successfully reduced by the bias cor- rection process in BCCA, showing an improvement over CA. This indicates that large scale bias may have been the pri- mary factor for bias in downscaled precipitation intensity in this area. The bias toward underestimation of precipitation intensity with CA over California is not removed by the bias correction, suggesting that some bias is introduced in the CA method in this region, which was also noted by Hidalgo et 32 1 Figure 4. CDFs for the same grid cell as in Figure 3, but based on monthly average 2 precipitation rate data for January for the “observed” period 1950-1976. 3 Fig. 4. CDFs for the same grid cell as in Fig. 3, but based on monthly average precipitation rate data for January for the “ob- served” period 1950–1976. al. (2008). Although the underestimation by CA and BCCA in California is largest during the rainy season, January and March in Fig. 2, the bias, while appearing large, is small rel- ative to the mean observed intensity in these months (in the leftmost column of Fig. 2). While the daily bias correction ensures that the cumula- tive distribution of daily precipitation (or maximum and min- imum temperature) values will exactly match the observed distribution for all the daily values for any month, it does not explicitly force the monthly distributions to match. In other words, by assembling all January daily values for 1950–1976 for a reanalysis grid cell into a single cumulative distribu- tion function (as in Fig. 3), the bias correction only guaran- tees that the entire set of daily values (for this example, 837 days) will match the statistics for the set of 837 days for the observations. There is no guarantee that the distribution of monthly precipitation values (for example, 27 January av- erage precipitation values) is also improved. However, as illustrated in Fig. 4, the monthly values are also largely cor- rected for their biases at all quantiles when the daily values are bias corrected. This indicates that the modeled precipita- tion variability in reanalysis at the daily scale within a month is consistent with observations, inasmuch as the monthly bias is largely addressed by the daily bias correction. 3.2 Impact of downscaling approaches on daily hydrology Prior to analyzing daily metrics, we assessed the ability of each downscaling method to reproduce annual flow vol- umes for the projected 1977–1999 period at each gauge site listed in Table 1. Three separate statistical tests were per- formed: The Mann-Whitney U test (for central tendency, the non-parametric alternative to mean) (Wilks, 2006); the Siegel-Tukey test (for scale, the non-parametric alternative to variance) (McCuen, 2003), and the KS test (noted above www.hydrol-earth-syst-sci.net/14/1125/2010/ Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 1132 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California Table 2. Statistical test results for BCSD, CA, and BCCA for annual flow volume simulations. A gauge name in bold face in- dicates that the downscaled streamflow using the indicated tech- nique differs from the observations. Two tests are used: the Mann- Whitney U (also referred to as the Wilcoxon-Mann-Whitney), and the Kolmogorov-Smirnov 2-sample test (both tests performed at p= 0.05). Mann-Whitney Test Kolmogorov-Smirnov Test BCSD CA BCCA BCSD CA BCCA SHAST SHAST SHAST SHAST SHAST SHAST SAC B SAC B SAC B SAC B SAC B SAC B OROVI OROVI OROVI OROVI OROVI OROVI NF AM NF AM NF AM NF AM NF AM NF AM FOL I FOL I FOL I FOL I FOL I FOL I CONSU CONSU CONSU CONSU CONSU CONSU PRD C PRD C PRD C PRD C PRD C PRD C DPR I DPR I DPR I DPR I DPR I DPR I LK MC LK MC LK MC LK MC LK MC LK MC MILLE MILLE MILLE MILLE MILLE MILLE KINGS KINGS KINGS KINGS KINGS KINGS in Sect. 2, for distribution characteristics, including central tendency, scale, and shape). Results are summarized in Ta- ble 2 for the Mann-Whitney U test and the KS test; The Siegel-Tukey test detected no sites with varying scale char- acteristics at the p= 0.05 level, and thus is not shown. For the annual flow volume simulations, the Mann-Whitney and KS test results in Table 2 show similar results at each site, suggesting that differences in the central tendency (as de- tected by the Mann-Whitney test) are the primary differ- ence in the simulation of downscaled hydrology, as opposed to changes in inter-annual variability (based on the Siegel- Tukey test finding no significant differences between ob- served and simulated scale/variability at any site). Based on the KS test results, for BCSD, three sites had distribu- tions of annual flow volumes that differed from the annual flow volumes produced by the hydrologic model simulation driven by observations. Similarly, CA differed at four of the stream gauge sites. BCCA, by contrast, produced a distribu- tion of annual flow volumes that were indistinguishable from the observation-driven hydrologic model run, showing sub- stantially improved downscaling skill even for annual mea- sures of performance. Three daily-scale streamflow metrics are evaluated in this study: center timing (CT), 3-day peak flow, and 7-day low flow. Center timing is defined as in Stewart et al. (2005) as the day on which half of the annual (water year, 1 October– 30 September) flow volume has passed a particular point on a stream. For each water year in the verification (or pro- jection) period of 1977–1999 the metrics are calculated and then the results are assembled into distributions for each met- ric. These distributions are compared among downscaling 33 1 Figure 5. Center timing for each streamflow site using each downscaling method, and the 2 observationally-derived streamflows. Day is day of the water year, so 1 corresponds to 3 October 1. 4 5 Fig. 5. Center timing for each streamflow site using each down- scaling method, and the observationally-derived streamflows. Day is day of the water year, so 1 corresponds to 1 October. methods and with the simulation using gridded 1/8 degree observations to drive the VIC model. As was found with the annual flow volumes (Table 2), the results of the Mann- Whitney test very closely resemble the results of the KS test, indicating that differences in the distribution of these daily hydrologic metrics are due principally to differences in cen- tral tendency rather than interannual variability, and thus KS test results are relied upon as the primary measure of down- scaling skill. Figure 5 shows the performance of the three downscal- ing techniques along with the observations-based stream- flow simulation for the CT statistic. Since CT in snowmelt- dominated basins tends to be driven more by temperature than precipitation, the distribution of CTs simulated by CA are able to capture the skill in daily temperature present in the reanalysis (since temperature observations are assimilated in the reanalysis product, bias is relatively low). CA appears to perform better than BCSD at several locations, for exam- ple OROVI, NF AM, and LK MC. What this demonstrates is that there is skill in simulating CT at many sites with BCSD, which assumes the distribution of daily values within any month are statistically the same for the observed (or train- ing) period of 1950–1976 as for the later projected period of 1977–1999. The CA method, by contrast, recognizes changes in the occurrence of large-scale climate patterns at the daily scale, and produces downscaled daily values that re- flect them, allowing the specific variations within months in each given year to change in the projected period, which re- sults in improved skill at some locations. BCCA does not ap- pear to differ greatly from CA at most locations, suggesting that the relatively low bias in reanalysis temperature causes the bias correction step to have a relatively small effect on this temperature-driven statistic. It should be noted that the small (0.2 ◦C), but significant domain average temperature difference between the 1950–1976 and 1977–1999 periods is dwarfed by the large projections for later in the 21st century Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 1133 34 1 Figure 6. Center timing for the NF_AM site for 1977-1999 using each downscaling method, 2 compared to the CT values for the observationally-derived streamflows. Units are day of the 3 water year, as in Figure 5. 4 Fig. 6. Center timing for the NF AM site for 1977–1999 us- ing each downscaling method, compared to the CT values for the observationally-derived streamflows. Units are day of the water year, as in Fig. 5. for this region (Cayan et al., 2008) of up to 4.5 ◦C. Thus, as the climate diverges from the historical record to a greater de- gree, it would be expected that the difference in skill between BCSD and the analogue-based methods (CA and BCCA) could become more stark. Figure 6 shows the CT values for each water year for the “projected” period of 1977–1999 at the NF AM site for BCSD, CA, and BCCA relative to the observations- driven simulated CT values. This supports the observation in the prior paragraph, where the temperature-driven daily CT statistic benefits from the large scale daily skill used by the CA and BCCA downscaling methods, while the BCSD method shows considerably less correlation, and suppressed interannual variability, relative to the observations-driven CT values. This suggests that skill in projections of how daily temperature sequences may evolve under changed climatic conditions can be captured by ingesting daily large-scale data into a downscaling technique. The first three columns of Table 3 summarize the KS test performed to determine whether the 22 simulated CT val- ues using the three downscaling methods can be assumed to be drawn from the same distribution with 95% confidence. This verifies that CA outperforms BCSD, providing a sta- tistically significant improvement at two locations (NF AM and LK MC). BCCA is generally as good or better than CA, producing CT values with a distribution statistically indistin- guishable from the CT values from the observationally driven hydrologic simulation at all sites. Figure 7 shows the results for the 3-day peak flow for dis- tribution of values for each of the 22 water years from 1978– 1999 at each site. The statistical test results for peak flows are in columns 4–6 in Table 3. In contrast to the CT mea- sure, 3-day peak flow is much more highly driven by pre- cipitation, which is less well represented in reanalysis, and thus would be expected to benefit from the bias correction 35 1 Figure 7. 3-day peak flow for each streamflow site. Note the vertical axes are different for 2 each of the panels. 3 4 Fig. 7. 3-day peak flow for each streamflow site. Note the vertical axes are different for each of the panels. to a greater degree than temperature driven phenomena. Fig- ure 7 shows that CA has a tendency to somewhat underpre- dict peak flow at most locations. BCCA produces visibly bet- ter simulated peak flow values than CA at many sites (e.g., NF AM, FOL I, DPR I, MILLE, KINGS), with BCCA dis- tributions showing a closer match to observations than CA. Surprisingly, Table 3 shows peak flows derived using down- scaled meteorology from all three techniques are statistically indistinguishable from those driven by observations at all sites at 95% confidence, so while BCCA appears to be an im- provement over CA, the difference is small relative to natural variability. This shows that, for precipitation-driven impacts, the bias-correction step used in BCSD (and BCCA) effec- tively accommodates the precipitation bias in the large-scale raw forcing data. Also, the use of anomalies in CA, which accounts for biases in the mean at the large scale, appears to work adequately, if not as well as possible, for supporting hydrologic skill of this peak flow statistic. Figure 8 illustrates the performance of BCCA and BCSD at one site relative to the hydrologic simulation using gridded observations, showing one wet year and one dry year. For the wet year both peak flows and low flows are captured rela- tively well, compared to the observations-driven simulation, for both BCSD and BCCA. BCCA shows the temporal corre- spondence to the simulation driven by observations, demon- strating that, even though the large scale reanalysis precipita- tion is numerical model output rather than assimilated obser- vations and has well-known biases, the bias correction pro- cedure employed here recovers the daily signal present in the observations. BCSD, by design, has no correspondence to the sequencing in the daily observations-driven simulation. However, even with its random generation of daily sequences within any month, BCSD does produce numbers and mag- nitudes of peak flows that resemble the observations-driven peak flows. www.hydrol-earth-syst-sci.net/14/1125/2010/ Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 1134 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California Table 3. Statistical test results for BCSD, CA, and BCCA for daily flow measures. A gauge name in bold face indicates that the distribution of 22 values for downscaled streamflow differs from the observed distribution, based on a Kolmogorov-Smirnov 2-sample test (at p= 0.05). Hence, non-bold face indicates the downscaling method produces values statistically indistinguishable from observations. Center Timing 3- Day Peak 7-Day Low Flow BCSD CA BCCA BCSD CA BCCA BCSD CA BCCA SHAST SHAST SHAST SHAST SHAST SHAST SHAST SHAST SHAST SAC B SAC B SAC B SAC B SAC B SAC B SAC B SAC B SAC B OROVI OROVI OROVI OROVI OROVI OROVI OROVI OROVI OROVI NF AM NF AM NF AM NF AM NF AM NF AM NF AM NF AM NF AM FOL I FOL I FOL I FOL I FOL I FOL I FOL I FOL I FOL I CONSU CONSU CONSU CONSU CONSU CONSU CONSU CONSU CONSU PRD C PRD C PRD C PRD C PRD C PRD C PRD C PRD C PRD C DPR I DPR I DPR I DPR I DPR I DPR I DPR I DPR I DPR I LK MC LK MC LK MC LK MC LK MC LK MC LK MC LK MC LK MC MILLE MILLE MILLE MILLE MILLE MILLE MILLE MILLE MILLE KINGS KINGS KINGS KINGS KINGS KINGS KINGS KINGS KINGS 36 1 Figure 8. Simulated streamflow for the NF_AM site (listed in Table 1) using driving 2 meteorology from BCCA and BCSD downscaling methods, and from the hydrologic model 3 simulation driven by gridded observations. A wet water year (top panel) and dry water year 4 (bottom panel) are shown. 5 Fig. 8. Simulated streamflow for the NF AM site (listed in Ta- ble 1) using driving meteorology from BCCA and BCSD down- scaling metho s, and from the hydrologic m del simulation driv n by gridded observations. A wet water year (top panel) and dry water year (bottom panel) are shown. The flows during the dry year in Fig. 8 show similar pat- terns to the wet year. However, one example of the shortcom- ing of selecting random daily sequences in BCSD is seen in October–November where BCSD shows too many smaller peak flows, whereas BCCA concentrates the flow on one larger peak event, better matching the observations-driven peak flow. The difficulty in matching the very low flows dur- ing May–June, at the end of the snow melt season, in the dry year by both downscaling procedures reinforces obser- vations by others that small variations in precipitation can result in larger differences in late season low flows (Vidal and Wade, 2008). The large scale reanalysis signal of precip- itation and temperature has been shown to be the most impor- tant determinant of uncertainty in simulations of low flows, with downscaling technique secondary (Wilby and Harris, 2006). Specifically related to the current study, Maurer and Hidalgo (2008) found generally lower skill in reproducing observed precipitation statistics with either the BCSD or the CA downscaling technique (applied to the same reanalysis data used in the current study), reflecting the limited daily skill in the large-scale reanalysis precipitation fields. While the bias correction included in each downscaling method can accommodate systematic biases in the large-scale predictor, it cannot produce skill where little exists in the large scale signal. This demonstrates that since the different bias correc- tion and downscaling procedures employed in this study will inevitably still contain some biases at the fine scale, their ef- fect on simulated flows may be especially evident during low flow periods. However, it should be noted that Fig. 8 depicts only one year; Fig. 5 shows that in general the seasonal cycle of accumulation and runoff at the NF AM site, as expressed by the streamflow timing, is well represented by the down- scaled hydrology, both in mean and interannual variability, especially by BCCA. Simulating 7-day low flows with downscaled meteorology is more problematic, as shown in Fig. 9 and columns 7–9 of Table 3. Several sites exhibit a distribution of low flows that are statistically different for both BCSD and CA down- scaling approaches from low flows simulated using gridded observed meteorology. As with peak flows, CA appears to Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 1135 37 1 Figure 9. 7-day low flow simulated for each site. Note the y-axes have different scales for 2 each panel. 3 Fig. 9. 7-day low flow simulated for each site. Note the y-axes have different scales for each panel. have a tendency to produce low flows that are lower than ob- served at many sites. While BCSD produces reasonable val- ues at some sites, low flows are overpredicted in some loca- tions, especially apparent at NF AM and FOL I. BCCA, by contrast, appears to produce low flows values that are closer to those produced by the observationally-driven simulation. Table 3 bears these observations out, showing that at two sites BCSD produces low flows different from observations, and at four sites CA produces different values from observa- tions, with high statistical confidence. For the low flow dis- tribution, BCCA is again statistically indistinguishable from observationally-driven hydrology at all sites. It is evident that the choice of downscaling method may influence results more for low flows than for other measures of streamflow. A factor contributing to this may be the relatively greater re- analysis skill (lower biases compared to reanalysis precip- itation) for daily temperature, allowing the bias correction to have a greater effect. Since low flows would be affected by evapotranspiration more so than peak flows, a better rep- resentation of daily temperatures, more closely resembling observations, would improve skill for the BCCA method. As a postscript, the improvement seen in applying the bias correction to large-scale daily forcing data begged the question of whether a post-downscaling bias correction, ap- plied using the same quantile mapping approach at the 1/8 degree spatial scale, could provide additional improvement in simulated hydrology. We conducted this experiment us- ing both the BCCA and the BCSD downscaled meteorology, performing quantile mapping bias correction of daily precip- itation, and maximum and minimum temperatures, again us- ing 1950–1976 as the “observed” period and 1977–1999 as “projections.” We found no consistent improvement in the simulated hydrologic measures used in this paper. This sug- gested that, since the systematic, large-scale biases had al- ready been removed in both BCSD and BCCA, the remain- ing fine scale biases during 1950–1976 were not generally the same as 1977–1999, and the assumptions embedded in the quantile mapping at fine scales were not substantiated in this study. 4 Summary and conclusions We statistically downscaled NCEP/NCAR reanalysis precip- itation and temperature over the western US using three dif- ferent methods and drove a hydrologic model with the re- sulting sets of downscaled meteorology. The historic record was divided into an “observed” period of 1950–1976 and “projections” from 1977–1999. Streamflow was estimated at 11 sites across California, and these were analyzed to deter- mine the ability to estimate three streamflow statistics impor- tant to hydrology: seasonal timing, peak flow, and low flow. One method, BCSD, uses monthly large-scale output, and rescales a historic month to estimate daily variability within each month. A second method, CA, uses daily large-scale output to downscale daily precipitation and temperature to a 1/8 degree grid. A new hybrid, the third method, BCCA, combined the bias correction step of BCSD and the daily downscaling of CA. We found that daily large scale skill can be effectively downscaled from the large scale to the regional scale to simulate these streamflow statistics. Reanalysis assimilates daily temperature observations, and thus has some large- scale skill for temperature, though reanalysis precipitation is solely model output and is prone to substantial biases. The timing of the annual hydrograph was captured by all down- scaling methods at most locations, though the hybrid BCCA method was the only one to perform well at all sites. For downscaling meteorology to generate extreme peak flows (3- day annual peaks), all methods performed well at all sites. The annual flow volume was reproduced with better skill by the hybrid BCCA method than either the BCSD or CA meth- ods, showing that the improvement with the BCCA method is also evident at temporal scales longer than daily. Low flows were more difficult to capture with the down- scaled data. While most of the streamflow sites included in our study had low flows simulated with downscaled data that were statistically indistinguishable from those derived when driving the hydrologic model with observations, BCSD and CA had shortcomings. As with the seasonal flow tim- ing statistic the BCCA method outperformed both the BCSD and the CA methods, statistically matching observationally- driven low flows at all sites. In summary, to downscale large-scale climate data to gen- erate estimates of extreme hydrologic events, downscaling daily large-scale output can provide measurable improve- ments in regional hydrologic skill, exceeding that of simply assuming that variability within a month will be similar to historical variability. However, without a bias correction step to correct large-scale biases (which can only be expected to be worse in free-running GCMs than in the data-assimilation www.hydrol-earth-syst-sci.net/14/1125/2010/ Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 1136 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California constrained reanalysis model outputs), the skillful signal in the daily data was less likely to be exhibited in the down- scaled data and the resulting hydrology. The bias correction step, applied to daily large-scale meteorology prior to down- scaling, produced some significant improvements in skill in simulating hydrologic extremes. The biases exhibited at the large scale are in both mean and variability, thus working with anomalies (as in the CA method) is not adequate to compensate for large scale biases, but the quantile mapping approach used in BCCA appears more promising. Acknowledgements. Support for this work was provided by the State of California through the California Energy Commission Public Interest Energy Research (PIER) Program. During the development of the majority of this work, HH was working as a scientist at Scripps Institution of Oceanography, and was also funded by the United States Department of Energy. The CALFED postdoctoral fellowship provided partial salary support for TD. The authors are grateful to two anonymous reviewers for their careful reading and insightful comments, which significantly improved the manuscript. Edited by: F. Pappenberger References Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.: Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River basin, J. Geophys Res., 101, 7449–7459, 1996. Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., and Dettinger, M. D.: Human-Induced Changes in the Hydrology of the Western United States, Science, 319, 1080– 1083, doi:1010.1126/science.1152538, 2008. Benestad, R. E.: Can We Expect More Extreme Precipitation on the Monthly Time Scale?, J. Climate, 19, 630–637, 2006. Brekke, L. D., Dettinger, M. D., Maurer, E. P., and Anderson, M.: Significance of model credibility in estimating climate projec- tion distributions for regional hydroclimatological risk assess- ments, Climatic Change, 89, 371–394, doi:310.1007/s10584- 10007-19388-10583, 2008. Cayan, D., Tyree, M., Dettinger, M., Hidalgo, H., Das, T., Maurer, E., Bromirski, P., Graham, N., and Flick, R.: Climate change scenarios and sea level rise estimates for the 2008 California cli- mate change scenarios assessment, California Energy Commis- sion, California Climate Change Center, Sacramento, CA, 64, 2009. Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M., and Hay- hoe, K.: Climate change scenarios for the California region, Cli- matic Change, 87, Suppl. 1, 21–42, doi:10.1007/s10584-10007- 19377-10586, 2008. Cherkauer, K. A., Bowling, L. C., and Lettenmaier, D. P.: Vari- able infiltration capacity cold land process model updates, Global Plan. Change, 38, 151–159, 2003. Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W.-T., Laprise, R., Magan˜a Rueda, V., Mearns, L., Mene´ndez, C. G., Ra¨isa¨nen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional climate projec- tions, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Re- port of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Uni- versity Press, Cambridge, United Kingdom and New York, NY, USA, 2007. Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensem- ble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hy- drol. Earth Syst. Sci., 11, 1417–1434, doi:10.5194/hess-11-1417- 2007, 2007. Das, T., Hidalgo, H. G., Dettinger, M. D., Cayan, D. R., Pierce, D. W., Bonfils, C., Barnett, T. P., Bala, G., and Mirin, A.: Struc- ture and Detectability of Trends in Hydrological Measures over the Western United States, J. Hydrometeorology, 10, 871–892, doi:10.1175/2009jhm1095.1, 2009. Dettinger, M. D., Cayan, D. R., Meyer, M., and Jeton, A. E.: Sim- ulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099, Climatic Change, 62, 283–317, 2004. Feddersen, H., Navarra, A., and Ward, M. N.: Reduction of model systematic error by statistical correction for dynamical seasonal predictions, J. Climate, 12, 1974–1989, 1999. Feddersen, H.: Impact of tropical SST variations on the lin- ear predictability of the atmospheric circulation in the At- lantic/European region, Ann. Geophys., 46, 109–124, 2003, http://www.ann-geophys.net/46/109/2003/. Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recent advances in down- scaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, doi:1510.1002/joc.1556, 2007. Fowler, H. J. and Ekstro¨m, M.: Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes, Int. J. Climatol., 29, 385–416, 2009. Girvetz, E. H., Zganjar, C., Raber, G. T., Maurer, E. P., Kareiva, P., and Lawler, J. J.: Applied Climate-Change Analysis: The Climate Wizard Tool, PLoS ONE, 4, e8320, 2009. Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res., 113, D06104, doi:06110.01029/02007JD008972, 2008. Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional Climate Predictions, B. Am. Meteorol. Soc., 90, 1095– 1107, 2009. Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., Wood, E., Anderson, B., Bradbury, J., Degae- tano, A., Troy, T. J., and Wolfe, D.: Past and future changes in climate and hydrological indicators in the US Northeast, Clim. Dyn., 28, 381–407, 2007. Hidalgo, H. G., Dettinger, M. D., and Cayan, D. R.: Downscal- ing with constructed analogues: daily precipitation and temper- ature fields over the United States, California Energy Commis- sion, Public Interest Energy Research Program, Sacramento, CA, 62, 2008. Iorio, J. P., Duffy, P. B., Govindasamy, B., Thompson, S. L., Khairoutdinov, M., and Randall, D.: Effects of model resolu- tion and subgrid-scale physics on the simulation of precipita- tion in the continental United States, Clim. Dyn., 23, 243–258, Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/ E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California 1137 doi:210.1007/s00382-00004-00440-y, 2004. IPCC: Contribution of Working Group I to the Fourth Assess- ment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Mar- quis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007a. IPCC: Climate change 2007: Impacts, adaptation and vulnerability, working group II contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2007b. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., and Reynolds, B.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, 1996. Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in hydrology, Adv. Water Resour., 25, 1287–1304, 2002. Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations, J. Climate, 20, 1419–1444, 2007. Kim, J., Kim, T. K., Arritt, R. W., and Miller, N. L.: Impacts of increased atmospheric CO2 on the hydroclimate of the western United States, J. Climate, 15, 1926–1942, 2002. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documenta- tion, B. Am. Meteorol. Soc., 82, 247–268, doi:210.1175/1520- 0477(2001)1082, 2001. Leung, L. R., Qian, Y., Bian, X. D., Washington, W. M., Han, J. G., and Roads, J. O.: Mid-century ensemble regional climate change scenarios for the western United States, Climatic Change, 62, 75–113, 2004. Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly precipitation and temperature fields from Intergovern- mental Panel on Climate Change AR4 models using equidis- tant quantile matching, J. Geophys. Res., 115, D10101, doi:10.1029/2009jd012882, 2010. Liang, X., Lettenmaier, D. P., Wood, E., and Burges, S. J.: A sim- ple hydrologically based model of land surface water and en- ergy fluxes for general circulation models, J. Geophys Res., 99, 14415–14428, 1994. Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal routing model to be coupled to land surface parame- terization schemes, Tellus, 48A, 708–721, 1996. Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation, J. Oceanogr., 58, 35–44, 2002. Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States, J. Climate, 15, 3237–3251, 2002. Maurer, E. P. and Lettenmaier, D. P.: Predictability of seasonal runoff in the Mississippi River basin, J. Geophys Res., 108, 8607, doi:8610.1029/2002JD002555, 2003. Maurer, E. P.: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California under two emissions scenarios, Climatic Change, 82, 309–325, doi:310.1007/s10584-10006- 19180-10589, 2007. Maurer, E. P., Stewart, I. T., Bonfils, C., Duffy, P. B., and Cayan, D.: Detection, attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada, J. Geophys Res., 112, D11118, doi:11110.11029/12006JD008088, 2007. Maurer, E. P. and Hidalgo, H. G.: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods, Hydrol. Earth Syst. Sci., 12, 551–563, doi:10.5194/hess-12-551-2008, 2008. Maurer, E. P., Adam, J. C., and Wood, A. W.: Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America, Hydrol. Earth Syst. Sci., 13, 183–194, doi:10.5194/hess-13-183-2009, 2009. McCuen, R. H.: Modeling Hydrologic change: Statistical Methods, Lewis/CRC, Washington, D.C., 433 pp., 2003. Mearns, L. O., Giorgi, F., McDaniel, L., and Shield, C.: Analysis of daily variability or precipitation in a nested regional climate model: comparison with observations and doubled CO2 results, Global Plan. Change, 10, 55–78, 1995. Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multimodel dataset: A new era in climate change re- search, B. Am. Meteorol. Soc., 88, 1383–1394, 2007. Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E.: Streamflow simulation for continental-scale basins, Water Resour. Res., 33, 711–724, 1997. Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, doi:10.1126/science.1128845, 2006. Panofsky, H. A. and Brier, G. W.: Some Applications of Statistics to Meteorology, The Pennsylvania State University, University Park, PA, USA, 224 pp., 1968. Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., and Let- tenmaier, D. P.: Mitigating the effects of climate change on the water resources of the Columbia River Basin, Climatic Change, 62, 233–256, 2004. Pierce, D. W., Barnett, T. P., Santer, B. D., and Gleckler, P. J.: Se- lecting global climate models for regional climate change stud- ies, Proc. National Academy Sci., 106, 8441–8446, 2009. Reichler, T. and Kim, J.: How Well Do Coupled Models Sim- ulate Today’s Climate?, B. Am. Meteorol. Soc., 89, 303–311, doi:310.1175/BAMS-1189-1173-1303, 2008. Shen, Y., Oki, T., Utsumi, N., Kanae, S., and Hanasaki, N.: Pro- jection of future world water resources under SRES scenarios: water withdrawal, Hydrolog. Sci. J., 53, 11–33, 2008. Snyder, M. A. and Sloan, L. C.: Transient future climate over the western United States using a regional climate model, Earth In- teractions, 9, Paper No. 11, 11–21, 2005. Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward earlier streamflow timing across western North America, J. Cli- mate, 18, 1136–1155, 2005. van den Dool, H. M.: Searching for analogues, how long must one wait?, Tellus, 2A, 314–324, 1994. Vicuna, S., Maurer, E. P., Joyce, B., Dracup, J. A., and Purkey, D.: The sensitivity of California water resources to climate change scenarios, J. Amer. Water Resources Assoc., 43, 482– 498, doi:410.1111/j.1752-1688.2007.00038.x, 2007. Vidal, J.-P. and Wade, S. D.: Multimodel projections of catchment- scale precipitation regime, J. Hydrol., 353, 143–158, 2008. Widmann, M. and Bretherton, C. S.: Validation of mesoscale pre- www.hydrol-earth-syst-sci.net/14/1125/2010/ Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 1138 E. P. Maurer et al.: Assessment of climate change impacts on daily streamflow in California cipitation in the NCEP reanalysis using a new grid-cell precipi- tation dataset for the Northwestern United States, J. Climate, 13, 1936–1950, 2000. Widmann, M., Bretherton, C. S., and Salathe, E. P.: Statistical pre- cipitation downscaling over the Northwestern United States us- ing numerically simulated precipitation as a predictor, J. Climate, 16, 799–816, 2003. Wilby, R. L. and Harris, I.: A framework for assessing un- certainties in climate change impacts: low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, doi:02410.01029/02005WR004065, 2006. Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2 Edn., Academic Press, New York, NY, USA, 627 pp., 2006. Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: Long-range experimental hydrologic forecasting for the eastern United States, J. Geophys Res., 107, 4429, doi:4410.1029/2001JD000659, 2002. Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hy- drologic implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 62, 189– 216, 2004. Hydrol. Earth Syst. Sci., 14, 1125–1138, 2010 www.hydrol-earth-syst-sci.net/14/1125/2010/