1307Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 Essential oils of Baccharis trinervis (Asteraceae) from Costa Rica Carlos Chaverri & José F. Cicció* Escuela de Química and Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica; carloschaverri@yahoo.com, jfciccio@gmail.com Received 11-V-2017. Corrected 20-VII-2017. Accepted 23-VIII-2017. Abstract: Baccharis is an Asteraceae genus of flowering plants, which has about 340 to 400 species, ranging from the Southern United States to the Southern extreme of Argentina and Chile through Central America and the Caribbean regions. The species Baccharis trinervis is a native shrub from Mexico, Central America and throughout South America. In Costa Rica, this species is commonly known as alcotán and the fresh leaves are used as a poultice on wounds and ulcers. The objective of the present research was to characterize the chemi- cal composition of seven hydrodistilled essential oils of diverse morphological parts of B. trinervis. For this, samples were obtained from three locations in Costa Rica and standard laboratory analyses were followed. The essential oils were analyzed by capillary gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) using the retention indices on a 5 % phenyl/dimethylpolysilox- ane fused silica column in addition to mass spectral fragmentation patterns, which allowed the identification of 268 compounds. The essential oils consisted mainly of terpenoids (92.3 to 97.8 %). The major constituents from the leaf oils were caryophyllene oxide (0.1-22.5 %), viridiflorol (8.8-21.0 %), germacrene D (0.5-19.1 %), germacrene B (0.2-16.0 %), β-caryophyllene (3.5-9.1 %), spathulenol (0.1-8.3 %), δ-3-carene (2.0-6.8 %), and α-pinene (2.5-5.9 %). The flower oil consisted mainly of globulol (0-24 %), β-caryophyllene (9.5-17.1 %), cis- muurola-4(14), 5-diene (traces-13.7 %), germacrene D (4.3-9.9 %), bicyclogermacrene (5.9-8.3 %), ar-curcum- ene (0-8.0 %), spathulenol (4.3-4.8 %), caryophyllene oxide (3.1-4.7 %), and viridiflorol (0.3-4.7 %). The major components of the branch oil were germacrene B (1.4-18.7 %), germacrene D (14.7-15.6 %), β-caryophyllene (10.1-12.4 %), viridiflorol (0-11.5 %), globulol (0.6-11.3 %), δ-3-carene (4.1-8.1 %), β-phellandrene (1.5-6.5 %), and bicyclogermacrene (3.6-4.9 %). The essential oil composition differed markedly from that of previously studied oils of plants growing in Brazil, which contain two characteristic stereoisomeric methyl dec-2-en- 4,6-diynoate compounds not detected in this study. This is the first report about the chemical composition of the essential oils obtained from this species growing wild in Costa Rica. Rev. Biol. Trop. 65 (4): 1307-1321. Epub 2017 December 01. Key words: Baccharis trinervis, Asteraceae, essential oils, terpenoids, GC-MS, Costa Rica. Baccharis L. is one of the largest gen- era within Asteraceae family (tribe Astereae, sub-tribe Baccharidinae) including herbaceous perennials, vines, shrubs and trees. This genus includes ca. 340 to 400 species ranging from the Southern United States to the Southern extreme of Argentina and Chile through Cen- tral America and the Caribbean basin (Heiden, Andrade-Baumgratz, & Esteves, 2012). Some of the species are economically important as medicinals -used mainly as infusions and decoctions- for treat stomach and liver ail- ments, inflammations, anemia, diabetes and prostate diseases (Verdi, Brighente, & Pizzo- latti, 2005). The vassoura essential oil (Bac- charis dracunculifolia DC.) and carqueja oil [B. genistelloides (Lam.) Pers.] are used in perfume industry (Ferracini et al., 1995). Baccharis trinervis Pers. [=Pseudobac- charis trinervis (Pers.) V. M. Badillo] is a com- mon shrub or sub-scandent shrub in the Pacific slope of Costa Rica, with hairless ribbed stems 1308 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 and oblong-elliptic or lanceolate-elliptic alter- nate leaves, 3 to 10 cm long, 1.5 to 3.5 cm wide, hard and rough, with three prominent, longitu- dinal veins, puberulent to pilose on both sides. Flowers are greenish-white disposed in termi- nal panicles (León & Poveda, 2000) situated within or overtopping the foliage. This plant has a wide distribution, from Mexico, Central America and throughout South America. In Costa Rica it is distributed over the country, from lowlands to 1 900 m of elevation, in both dry and wet forests. This plant is commonly known as alcotán, and in the Northwestern Guanacaste Province it is known as jalapatrás and rastrapo (León & Poveda, 2000). In Costa Rica, the fresh leaves are used as a poultice on wounds and ulcers (Pittier, 1978) and the alcoholic extracts of roots are said to be used as remedy for snakebites (Núñez-Meléndez, 1978). In Honduras, the extracted juice of the leaf, and root decoctions, are taken as a remedy for kidney troubles, pain and inflammations, as a febrifuge, for halting diarrhea, and against rheumatic pains (House et al., 1995). It has also been used in various liver diseases, as a purga- tive, antiseptic, digestive and diuretic, in rectal washes against hemorrhoids and as a remedy for typhoid fever (Ramírez-Cárdenas, Isaza- Mejía, & Pérez-Cárdenas, 2013). Many phytochemical investigations have been performed on plants of the Baccharis genus and are characterized by the occurrence of flavonoids, diterpenoids (the most prominent classes are clerodanes and labdanes, and with some frequency, kauranes), triterpenes, phe- nolic compounds, and particularly important is the occurrence of essential oils (Verdi et al., 2005; Abad & Bermejo, 2007; Ramos Campos et al., 2016). From the aerial parts of Baccharis trinervis, Bohlmann and Zdero (1970) reported the presence of matricaria ester, and three C-17 esters with an ene-diyne-diene-structure. From air-dried aerial parts (from Brazil) were obtained the terpenoids phytene, caryophyl- lene, germacrene D, bicyclogermacrene, α- and γ-humulene, squalene, lupeyl acetate, lupeol, β-amyrin and the diacetylenic compound lach- nophyllum ester (Bohlmann, Kramp, Grenz, Robinson, & King, 1981), whereas the study of Kuroyanagi, Uchida, Ueno, Satake, and Shimomura (1993) afforded 24 neo-clerodane type diterpenes, many of them new. Also, Her- rera, Rosas-Romero, Crescente, Acosta, and Pekerar (1996) reported several 5-hydroxy- 7-methoxyflavones from leaves, and Sharp et al. (2001) reported three 6-oxigenated flavones from branches. Regarding biological activities attributed to this species there are some reports about anti- oxidant activity of the ethanolic extract (Heras et al., 1998), antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV-1) and poliovirus type I (Abad, Ber- mejo, Sánchez-Palomino, Chiriboga, & Carras- co, 1999), anti-HIV activity in macrophages (Sánchez-Palomino et al., 2002), antimicrobial activity (Albuquerque et al., 2004), and anti- oxidant, antifungal and hemolytic activities of the essential oil (Sobrinho et al., 2016). In relation to the essential oil composition of the aerial parts of this species, there are only three previous reports: two studies from mate- rial collected in the state of Ceará, Northeast Brazil (Albuquerque et al., 2004; Sobrinho et al., 2016), and another from the state of Mérida, Venezuela (Rojas et al., 2008). The objective of the present research was the characterization of the chemical composi- tion of seven different samples of essential oils from diverse morphological parts of B. triner- vis collected in three different locations in cen- tral Costa Rica. To the best of our knowledge, no previous chemical work on B. trinervis from Costa Rica has been reported. MATERIALS AND METHODS Plant material: The aerial parts of Baccha- ris trinervis were collected from three localities of Costa Rica: Miramar, Montes de Oro moun- tains (west central Pacific), Province of Puntar- enas (10°06’12.79” N - 84°42’26.09” W, at an elevation of 750 m), on April 2009, during the flowering stage; in the University of Costa Rica Campus, San Pedro de Montes de Oca, Province of San José (9°56’14.60” N - 84°02’51.51” W, 1309Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 at 1 210 m elevation), on February 2009, during vegetative stage, and Pavas, Province of San José (9°56’37.20” N - 84°06’59.40” W, at an elevation of 1 093 m) on November 2015, dur- ing the flowering stage of the plant. A voucher specimen has been deposited in the Herbarium of the University of Costa Rica at the School of Biology (USJ 93916). Isolation of the essential oils: Plant mate- rials were hydrodistilled at atmospheric pres- sure, for 3 h, using a Clevenger-type apparatus. The distilled oils were collected and dried over anhydrous sodium sulfate, filtered and stored at 0-10 °C in the dark, for further analysis. The essential oil yields (v/w) from diverse morphological parts from three localities in central Costa Rica were: Miramar sample, 0.32 % (leaf), 0.04 % (flower); San Pedro sample, 0.35 % (leaf), 0.03 % (branch); and Pavas sample, 0.23 % (leaf), 0.06 % (flower), and 0.05 % (branch). Gas chromatographic (GC-FID) anal- yses: The oils of Baccharis trinervis were analyzed using a Shimadzu GC-2014 gas chro- matograph. The data were obtained on a 5 % phenyl/dimethylpolysiloxane column (30 m x 0.25 mm; film thickness 0.25 μm), (MDN-5S, Supelco), with a Shimadzu GCsolution Chro- matography Data System, Shimadzu GC Solu- tion, Chromatography Data System, software version 2.3. The experimental conditions were: carrier gas N2, flow 1.0 mL/min; oven tempera- ture program: 60 to 280 °C at 3 °C/min, 280 °C (2 min); sample injection port temperature 250 °C; detector temperature 280 °C; split 1:60. Gas chromatography-mass spectrom- etry (GC-MS): The analyses were performed using a Shimadzu GC-17A gas chromato- graph coupled with a GCMS-QP5000 appa- ratus and CLASS 5000 software with Wiley 139 and NIST computer databases. The data were obtained on a MDN-5S column (30 m x 0.25 mm), coated with 5 % phenyl/dimethyl- polysiloxane (film thickness 0.25 μm). Experi- mental conditions were: carrier gas He, flow 1.0 mL/min; oven temperature program: 60 to 280 °C at 3 °C/min; sample injection port tem- perature 250 °C; detector temperature 260 °C; ionization voltage: 70 eV; ionization current 60 μA; scanning speed 0.5 s over 38 to 400 amu range; split 1:70. Compound identification and quanti- fication: The components of the oils were identified by comparison of their linear reten- tion indices which were calculated in rela- tion to a homologous series of n-alkanes, on 5 % phenyl/ dimethylpolysiloxane type column (van den Dool & Kratz, 1963), and by com- parison of their mass spectral fragmentation patterns with those published in the literature (Adams, 2007) or those of our own database. To obtain the retention indices for each peak, 0.1μL of n-alkane mixture (Sigma, C8 to C32 standard mixture) was injected under the same experimental conditions reported above. Inte- gration of the total chromatogram (GC-FID), expressed as area percent, has been used to obtain quantitative compositional data without FID response factor correction. RESULTS The essential oils from different parts of Baccharis trinervis from Costa Rica presented a very complex chemical profile. The com- pounds identified, their experimental reten- tion indices (RI) determined in relation to a homologous series of linear alkanes (C8 to C32), their relative percentage concentrations, and the method used for their identification are presented in table 1. The constituents are listed in order of elution on a MDN-5S column and for comparison purposes, previously published values of the retention indices are included (Lit. RI). Compounds identified in this study and previously reported in the Venezuelan and Brazilian essential oil samples are indicated by bullets and/or asterisks. Baccharis trinervis gave essential oils which were predominantly terpenoid in nature with a few aliphatic and aromatic compounds as minor and trace constituents. In table 2, 1310 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TABLE 1 Chemical and percentage composition of oils of Baccharis trinervis from three locations in Costa Rica Compounda RIb Lit. RIc Classd Miramar San Pedro Pavas Ident. methodeLeaf Flower Leaf Branch Leaf Flower Branch Hexane 623 623 A t 1,2,3 3-Methylbutanal 655 658 A t 1,2 2-Ethylfuran 702 702 Misc. t 1,2 Pentanal 704 704 A t 0.1 1,2 4-Methylcyclohexene 740 740 A t 1,2 Toluene 768 770f B t 1,2 Octane 800 800 A t 1,2,3 Hexanal 801 801 A t t 1,2 (E)-Hex-2-enal 852 846 A t t t t 0.1 0.1 1,2 (Z)-Salvene 846 847 M t 1,2 (E)-Hex-2-en-1-ol 859 854 A 0.1 0.2 0.1 1,2 Hexan-1-ol 864 863 A t 0.1 t t 1,2 2-Butylfuran 883 885g Misc. t 1,2 Heptan-2-one 888 889 A t 1,2 (Z)-Hept-4-enal 897 898 A t 1,2 Heptanal 901 901 A t 0.1 t t t t 1,2 α-Thujene*• 923 924 M 1.0 0.3 1.7 0.3 1.6 0.1 0.3 1,2 α-Pinene*• 930 932 M 3.9 1.0 2.5 0.6 5.9 0.3 1.9 1,2,3 Camphene*• 946 946 M 0.1 t 0.1 0.1 t 1,2 Thuja-2,4(10)-diene 952 953 M t 1,2 Benzaldehyde 959 952 B t t t 1,2 Sabinene*• 970 969 M 0.8 0.3 0.4 0.2 1.6 0.3 0.3 1,2 β-Pinene*• 978 974 M 1.6 1.0 1.3 0.8 2.5 0.4 2.1 1,2,3 6-Methylhept-5-en-2-one 982 981 A t t 1,2 Myrcene*• 986 988 M 0.2 0.3 0.8 0.5 1.3 0.1 1.4 1,2 Dehydro-1,8-cineole 988 988 M 0.1 1,2 Mesitylene 995 995 B t 1,2 Decane 1 000 1 000 A t t 1,2,3 δ-2-Carene 1 000 1 001 M t t t t t 1,2 α-Phellandrene* 1 002 1 002 M 0.1 1,2 p-Mentha-1(7)-8-diene 1 003 1 003 M t 1,2 (Z)-Hex-3-en-1-yl acetate 1 004 1 004 A t 0.1 1,2 (E)-Hex-2-en-1-yl acetate 1 007 1 010 A t 1,2 δ-3-Carene* 1 008 1 008 M 2.0 0.9 6.8 4.1 6.6 2.2 8.1 1,2 α-Terpinene* 1 016 1 014 M t 0.1 0.2 0.1 0.1 t 0.4 1,2 p-Cymene* 1 020 1 020 M t 0.1 t t 1,2 o-Cymene 1 022 1 022 M 0.1 0.1 0.8 0.2 0.4 1,2 Limonene* 1 026 1 024 M 0.9 0.6 0.9 0.7 2.9 0.6 1.5 1,2,3 β-Phellandrene*• 1 027 1 025 M 0.1 0.5 1.9 1.5 1.0 0.3 6.5 1,2 1,8-Cineole 1 031 1 026 M t 1,2,3 (Z)-β-Ocimene*• 1 036 1 032 M 0.1 t t t t t 1,2 (E)-β-Ocimene*• 1 043 1 034 M t 0.1 0.5 0.3 0.1 t 1.0 1,2 γ-Terpinene*• 1 056 1 054 M t 0.1 0.9 0.3 t 0.1 1.1 1,2 (E)-Oct-2-en-1-ol 1 063 1 060 A t 1,2 cis-Sabinene hydrate• 1 068 1 065 M 0.1 0.2 t 1,2 cis-Linalool oxide (furanoid) 1 074 1 067 M 0.2 1,2 m-Cymenene 1 079 1 082 M t t 1,2 1311Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TABLE 1 (Continued) Compounda RIb Lit. RIc Classd Miramar San Pedro Pavas Ident. methodeLeaf Flower Leaf Branch Leaf Flower Branch p-Mentha-2,4(8)-diene 1 080 1 085 M t 0.1 1,2 Terpinolene* 1 084 1 086 M t 0.1 1.0 0.6 t 0.2 1.5 1,2 p-Cymenene 1 089 1 089 M t 0.1 t 0.1 0.2 1,2 Linalool* 1 094 1 095 M 0.3 0.1 t t 0.1 0.1 1,2,3 trans-Sabinene hydrate• 1 099 1 098 M 0.1 t 0.1 1,2 Undecane 1 100 1 100 A t 1,2 Nonanal 1 101 1 100 A t 0.2 t t t t 1,2 Perillene 1 104 1 102 Misc t 0.1 t t 1.0 1,2 α-Fenchocamphorone 1 109 1 104 M t 1,2 (Z)-2-Isopropyl-5-methyl-hex-2-enal 1 112 1 112 A t 1,2 trans-Thujone 1 113 1 112 M t 1,2 Dehydro-sabina ketone 1 116 1 117 M 0.1 1,2 cis-p-Menth-2-en-1-ol*• 1 122 1 118 M 0.1 0.1 t 0.2 t 0.1 1,2 α-Campholenal 1 123 1 122 M 0.1 1,2 (E,E)-2,6-Dimethyl-1,3,5,7-octatetraene 1 128 1 130 h M t t 1,2 cis-Limonene oxide 1 131 1 132 M 0.1 t 0.1 1,2 cis-p-Mentha-2,8-dien-1-ol 1 133 1 133 M t 1,2 trans-Pinocarveol 1 135 1 135 M t 0.1 1,2 trans-p-Menth-2-en-1-ol 1 136 1 136 M t 0.1 t 1,2 trans-Sabinol 1 136 1 137 M t 1,2 cis-Pinene hydrate 1 139 1 139 M t 1,2 (E)-Tagetone 1 139 1 139 M 0.3 1,2 trans-Verbenol 1 144 1 140 M t 0.1 1,2 p-Meth-3-en-8-ol 1 148 1 145 M 0.2 1,2 Eucarvone 1 148 1 146 M 0.2 1,2 neo-iso-Thujan-3-ol 1 149 1 147 M t 1,2 Nerol oxide 1 150 1 154 M t t 1,2 neo-Thujan-3-ol 1 153 1 149 M t 1,2 (E)-Non-2-enal 1 157 1 157 A t t 1,2 Benzyl acetate 1 158 1 157 B 0.1 1,2 trans-Pinocamphone 1 160 1 158 M 0.1 1,2 δ-Terpineol 1 161 1 162 M 0.2 1,2 (2Z)-Non-2-en-1-ol 1 163 1 162 A 0.1 1,2 1,3-Dimetoxibenzene 1 165 1 165 B 0.1 1,2 Borneol 1 165 1 165 M 0.1 t 1,2 p-Mentha-1,5-dien-8-ol 1 167 1 166 M t t t t 1,2 Santolinyl acetate 1 173 1 171 M t 1.2 cis-Pinocamphone 1 175 1 172 M 0.1 0.1 1,2 Terpinen-4-ol*• 1 177 1 174 M 0.7 0.1 0.5 0.3 0.7 0.1 0.8 1,2,3 p-Methyl acetophenone 1 182 1 179 B t 1,2 p-Cymen-8-ol 1 184 1 179 M 0.4 t 0.7 0.1 1,2 Cryptone• 1 186 1 183 M 0.1 t t 0.1 1,2 Dill ether 1 188 1 184 M 0.2 1,2 α-Terpineol 1 190 1 192i M 0.5 t 0.1 0.1 0.2 1,2 Methyl salicylate 1 191 1 190 B t t t 1,2 Dihydrocarveol 1 192 1 192 M t 1,2 Myrtenol 1 196 1 194 M 0.1 1,2 cis-Piperitol 1 198 1 195 M t t 1,2 Safranal 1 199 1 197 M t 1,2 1312 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TABLE 1 (Continued) Compounda RIb Lit. RIc Classd Miramar San Pedro Pavas Ident. methodeLeaf Flower Leaf Branch Leaf Flower Branch Dodecane 1 200 1 200 A 0.1 1,2,3 Verbenone 1 206 1 204 M 0.3 0.1 1,2 trans-Piperitol 1 207 1 207 M t t 1,2 (E,E)-Nona-2,4-dienal 1 209 1 210 A t 1,2 4-Methylene-isophorone 1 216 1 216 M t 0.1 1,2 β-Cyclocitral 1 217 1 217 M 0.1 1,2 cis-Sabinene-hydrate acetate 1 218 1 219 M t t 1,2 Citronellol 1 218 1 219 M t 1,2 (Z)-Ocimenone 1 228 1 226 M t 1,2 Nerol 1 230 1 227 M t 1,2 (3Z)-Hexenyl 3-methylbutanoate 1 232 1 230 A t 1,2 (3Z)-Hexenyl 2-methylbutanoate 1 232 1 232 A t 1,2 Ascaridole 1 234 1 234 M t 1,2 Cumin aldehyde 1 240 1 238 M 0.1 1,2 Carvone 1 241 1 239 M 0.2 1,2 (2Z)-Hexenyl 3-methylbutanoate 1 242 1 241 A t 1,2 (2E)-Hexenyl 3-methylbutanoate 1 243 1 243 A 0.1 t 1,2 Car-3-en-2-one 1 245 1 244 M 0.1 0.1 t 0.1 1,2 Piperitone 1 249 1 249 M 0.1 t 1,2 Geraniol 1 250 1 249 M t t 1,2 trans-Ascaridol glicol 1 267 1 266 M 0.1 1,2 p-Menth-1-en-7-al 1 285 1 273 M t t 1,2 p-Ethyl acetophenone 1 285 1 279 B t 1,2 Bornyl acetate 1 286 1 287 M 0.1 t 1,2 Thymol* 1 288 1 289 M 0.3 1,2 γ-Terpinen-7-al 1 289 1 291 M t 1,2 Undecan-2-one 1 295 1 293 A t 1,2 Tridecane 1 300 1 300 A 0.1 t 1,2,3 Undecanal 1 308 1 305 A 0.1 0.2 1,2 Dihydrocarveol acetate 1 309 1 306 M t 1,2 Isoverbanol acetate 1 310 1 308 M 0.5 1,2 (E,E)-Deca-2,4-dienal 1 314 1 315 A t 0.1 1,2 δ-Terpinyl acetate 1 319 1 316 M t 1,2 (3Z)-Hexenyl tiglate 1 320 1 319 A t 1,2 Silphiperfol-5-ene 1 323 1 326 S 0.1 1,2 cis-Piperitol acetate 1 331 1 332 M 0.2 t 1,2 δ-Elemene* 1 334 1 335 S 0.2 0.3 0.2 0.1 0.2 0.1 1,2 7-epi-Silphiperfol-5-ene 1 344 1 345 S t t 0.1 1,2 α-Cubebene 1 345 1 345 S 0.4 0.3 0.5 0.7 0.2 0.2 1,2 α -Terpinyl acetate* 1 347 1 346 M 0.2 1,2 α-Longipinene 1 357 1 350 S t 0.1 1,2 Cyclosativene 1 366 1 369 S 0.5 t t 1,2 α-Ylangene 1 369 1 373 S 0.4 0.3 0.5 0.4 0.3 0.3 1,2 α-Copaene*• 1 373 1 374 S 1.3 0.7 1.1 1.5 0.6 0.8 1.0 1,2 Silphiperfol-6-ene 1 377 1 377 S 0.2 1,2 β-Patchoulene 1 379 1 379 S t 1,2 β-Cubebene 1 384 1 387 S 0.1 t t 0.3 0.1 1,2 β-Bourbonene 1 386 1 387 S t 0.2 0.1 1,2 β-Elemene*• 1 386 1 389 S 0.8 2.5 2.1 2.7 3.0 4.3 1.3 1,2 1313Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TABLE 1 (Continued) Compounda RIb Lit. RIc Classd Miramar San Pedro Pavas Ident. methodeLeaf Flower Leaf Branch Leaf Flower Branch Tetradecane 1 400 1 400 A t t 1,2,3 β-Longipinene 1 401 1 400 S 0.1 t 0.1 1,2 Methyleugenol 1 403 1 403 PP 0.2 t 1,2 Longifolene 1 405 1 407 S t t 1,2 α-Gurjunene 1 409 1 409 S t 0.2 0.1 1,2 β-Caryophyllene*• 1 416 1 417 S 3.5 9.5 9.1 12.4 7.9 17.1 10.1 1,2,3 β-Copaene 1 428 1 430 S 0.3 0.8 t 2.8 0.7 t 0.6 1,2 β-Gurjunene 1 429 1 431 S 0.7 1,2 α-trans-Bergamotene 1 432 1 432 S t 0.1 0.1 1,2 γ-Elemene 1 432 1 434 S 1.9 t 1,2 α-Guaiene 1 434 1 437 S 0.1 0.1 0.1 1,2 Aromadendrene 1 437 1 439 S t 0.1 0.2 0.1 0.3 0.1 0.2 1,2 (Z)-β-Farnesene 1 438 1 440 S 0.1 0.3 1,2 6,9-Guaiadiene 1 442 1 442 S 0.1 t t t 1,2 cis-Muurola-3,5-diene 1 447 1 448 S t t 0.2 t 0.1 1,2 trans-Muurola-3,5-diene 1 450 1 451 S 0.2 t t 0.1 1,2 α-Humulene*• 1 453 1 452 S 0.5 2.2 1.0 1.3 1.1 1.8 1.4 1,2,3 (E)-β-Farnesene 1 454 1 454 S t 1,2 Alloaromadendrene 1 458 1 458 S 0.1 0.1 0.1 0.1 1,2 cis-Cadina-1(6),4-diene 1 460 1 461 S t 0.1 1,2 9-epi-β-Caryophyllene 1 461 1 464 S 0.1 t t 1,2 cis-Muurola-4(14),5-diene 1 465 1 465 S 13.7 t 0.1 t 1,2 Dauca-5,8-diene 1 471 1 471 S t 1,2 trans-Cadina-1(6),4-diene 1 471 1 475 S t 1,2 γ-Gurjunene 1 477 1 475 S t 0.6 0.3 1,2 γ-Muurolene*• 1 478 1 478 S 2.1 1.6 1.6 1,2 ar-Curcumene 1 471 1 479 S 2.0 8.0 1,2 γ-Curcumene 1 478 1 481 S 1.5 1,2 α-Amorphene 1 483 1 483 S 0.2 0.1 1,2 Germacrene D* 1 486 1 484 S 0.5 4.3 19.1 14.7 6.3 9.9 15.6 1,2,3 β-Selinene* 1 490 1 489 S 0.3 0.9 1.6 1.1 0.5 1,2 cis-β-Guaiene 1 493 1 492 S 0.6 1,2 trans-Muurola-4(14),5-diene 1 493 1 493 S t 0.7 t 1,2 Viridiflorene 1 496 1 496 S 0.7 1.8 1,2 Bicyclogermacrene*• 1 498 1 500 S 8.3 4.4 3.6 2.5 5.9 4.9 1,2 a-Muurolene* 1 497 1 500 S 0.5 1.0 t 0.4 1,2 Epizonarene 1 502 1 501 S 0.7 1,2 trans-β-Guaiene 1 506 1 502 S 0.5 1,2 β-Bisabolene 1 505 1 505 S 0.4 1.4 1,2 Germacrene A 1 507 1 508 S 0.5 0.4 0.3 1,2 δ-Amorphene 1 510 1 511 S 0.1 0.4 0.4 0.5 0.3 1,2 γ-Cadinene* 1 513 1 513 S 0.3 2.5 0.6 0.8 0.5 0.3 0.5 1,2 Cubebol 1 515 1 514 S 2.5 0.3 0.1 t t 1,2 β-Sesquiphellandrene 1 518 1 521 S 0.5 1,2 δ-Cadinene* 1 519 1 522 S 0.8 3.4 4.3 1.4 1.4 3.5 1,2 cis-Calamenene 1 526 1 528 S 0.3 0.2 t 1,2 Zonarene 1 527 1 528 S 0.1 0.1 1,2 (Z)-Nerolidol 1 533 1 531 S 0.1 1,2 trans-Cadina-1,4-diene 1 531 1 533 S 0.2 0.5 0.2 0.2 0.2 1,2 1314 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TABLE 1 (Continued) Compounda RIb Lit. RIc Classd Miramar San Pedro Pavas Ident. methodeLeaf Flower Leaf Branch Leaf Flower Branch 10-epi-Cubebol 1 535 1 533 S 0.1 0.3 1,2 α-Cadinene* 1 536 1 536 S 0.2 0.4 0.6 0.2 0.1 1,2 cis-Sesquisabinene hydrate 1 537 1 542 S t 1,2 α-Calacorene 1 538 1 544 S 0.7 0.5 t 0.1 0.2 1,2 Selina-3,7(11)-diene 1 541 1 545 S 0.3 0.6 1,2 Hedycaryol 1 546 1 546 S 0.3 1,2 Elemol 1 547 1 548 S 0.2 1,2 trans-Dauca-4(11),7-diene 1 552 1 557 S t 1,2 Silphiperfol-5-en-3-ol A 1 554 1 557 S 0.1 1,2 Germacrene B* 1 557 1 559 S 0.2 4.3 16.0 18.7 1.4 1.8 1.4 1,2 β-Calacorene 1 560 1 564 S 1.3 0.2 0.4 1,2 (E)-Nerolidol 1 567 1 561 S 0.2 0.1 1,2,3 Palustrol 1 569 1 567 S 0.3 0.1 0.1 0.2 0.4 0.4 0.4 1,2 Dendrolasin 1 570 1 570 Misc 0.1 0.1 1,2 (Z)-Dihydroapofarnesol 1 571 1 571 S t 0.1 1,2 Spathulenol 1 577 1 577 S 8.3 4.3 0.1 0.2 3.0 4.8 0.3 1,2 Caryophyllene oxide 1 583 1 582 S 22.5 3.1 0.1 1.3 1.7 4.7 0.4 1,2 Thujopsan-2-α-ol 1 585 1 586 S t 1,2 Globulol 1 590 1 590 S 0.1 11.3 0.3 24.8 0.6 1,2 Salvial-4(14)-en-1-one 1 593 1 594 S t 1,2 Viridiflorol 1 594 1 592 S 20.3 4.7 8.8 21.0 0.3 11.5 1,2 Ledol 1 604 1 602 S 0.5 0.1 0.1 0.5 0.3 1,2 5-epi-7-epi-α-Eudesmol 1 606 1 607 S t 0.6 0.5 1,2 Humulene epoxide II 1 608 1 608 S 2.5 1.2 1,2 1,10-di-epi-Cubenol 1 616 1 618 S t 0.3 1,2 Junenol 1 622 1 618 S t 0.4 1,2 1-epi-Cubenol 1 626 1 627 S 2.1 0.7 0.1 0.2 0.4 0.6 1,2 (E)-Sesquilavandulol 1 631 1 631 S 0.3 1,2 cis-Cadin-4-en-7-ol 1 634 1 635 S 1.6 3.5 0.5 1,2 epi-α-Cadinol (=Τ-Cadinol)* 1 641 1 638 S 0.3 1.1 0.3 0.4 1.3 0.7 t 1,2 epi-α-Muurolol (=Τ-Muurolol) 1 642 1 640 S 1.0 0.1 0.1 0.9 0.8 1.3 1,2 Cubenol 1 644 1 645 S 0.5 1,2 α-Muurolol (=Torreyol)* 1 645 1 644 S 0.5 t t 0.4 1,2 α-Cadinol* 1 655 1 652 S 1.2 0.8 0.5 1.7 0.3 1.7 1,2 Selin-11-en-4-α-ol 1 658 1 658 S t 0.1 0.5 1.1 0.4 1,2 neo-Intermedeol 1 660 1 658 S 0.3 1,2 cis-Calamenen-10-ol 1 663 1 660 S 0.3 1,2 Intermedeol 1 665 1 665 S t 0.1 1,2 trans-Calamenen-10-ol 1 667 1 668 S 0.3 0.2 1,2 14-Hydroxy-9-epi-β-caryophyllene 1 668 1 668 S 1.3 t 1,2 Cadalene 1 672 1 675 S t 0.4 1,2 Mustakone 1 672 1 676 S 0.5 1,2 Khusinol 1 679 1 679 S t 1,2 epi-α-Bisabolol 1 683 1 683 S 0.5 1,2 Germacra-4(15),5,10(4)-trien-1- α-ol 1 687 1 685 S 0.4 0.4 1,2 α-Bisabolol 1 688 1 685 S 0.5 1,2 Eudesma-4(15),7-dien-1-β-ol 1 690 1 687 S 0.6 0.1 1,2 Eudesm-7(11)-en-4-ol 1 697 1 700 S t 0.1 1,2 Heptadecane 1 700 1 700 A 0.2 1,2,3 1315Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TABLE 1 (Continued) Compounda RIb Lit. RIc Classd Miramar San Pedro Pavas Ident. methodeLeaf Flower Leaf Branch Leaf Flower Branch Amorpha-4,9-dien -2-ol 1 699 1 700 S t 1,2 10-Nor-Calamenen-10-one 1 701 1 702 B t 1,2 Pentadecanal 1 724 1 717j A 0.3 0.1 0.3 1,2 Isobicyclogermacrenal 1 730 1 733 S t 1,2 Mint sulfide 1 738 1 740 S 0.5 0.6 0.4 0.1 1,2 2-α-Hydroxy-amorpha-4,7(11)-diene 1 775 1 775 S t 0.3 1,2 Hexadecanal 1 836 1 836 A 0.1 1,2 6,10,14-Trimethyl-2-pentadecanone 1 848 1 848 IT 0.3 1,2 Farnesyl acetone 1 886 1 889 IT t 1,2 Hexadecanoic acid 1 959 1 959 A 0.3 1,2,3 Ethyl hexadecanoate 1 992 1 993 A 0.1 1,2 (Z,E)-Geranyl linalool 1 998 1 997 D 0.2 1,2 (6E,10Z)-pseudo Phytol 2 016 2 018 D 0.2 1,2 (Z)-Phytol 2 014 2 014 D 0.1 0.2 1,2 (E)-Phytol 2 106 2 107 D t 1,2 Linolenic acid 2 132 2 129 A 0.1 1,2 Docosane 2 200 2 200 A t 1,2,3 Tricosane 2 300 2 300 A t 1,2,3 Pentacosane 2 500 2 500 A t 1,2,3 Hexacosane 2 600 2 600 A t 1,2,3 Heptacosane 2 700 2 700 A t 1,2,3 Octacosane 2 800 2 800 A t 1,2,3 Nonacosane 2 900 2 900 A t 1,2,3 Triacontane 3 000 3 000 A t 1,2,3 Untriacontane 3 100 3 100 A t 1,2,3 Total 97.3 95.6 96.0 98.6 93.1 93.4 96.8 Compounds 121 129 92 93 102 84 90 aCompounds listed in order of elution from 5 % phenyl/ 95 % dimethylpolysiloxane column. bRI = Retention index relative to C8-C32 n-alkanes on the 5 % phenyl/95 % dimethylpolysiloxane column. cLit. RI= (Adams, 2007). dCompound class: A, aliphatics; B, benzenoids; D, diterpenoids; IT, irregular terpenoids; M, monoterpenoids; Misc, miscellaneous; PP, phenylpropanoids; S, sesquiterpenoids. eMethod: 1 = Retention index on 5 % phenyl/95 % dimethylpolysiloxane. 2 = MS spectra. 3 = Standard. f(Jordan, Margaria, Shaw, & Goodner, 2002). g(Radulovic, Dordevic, & Palic, 2010). h(Ali et al., 2008). i(Zoghbi et al., 1998). j(Flamini et al., 2003). t: traces (<0.05 %). Blank space = not detected. Asterisk* = compounds reported previously in Albuquerque et al. (2004) and Sobrinho et al. (2016). Bullet• = compounds reported in Rojas et al. (2008). the percentages of the various classes of con- stituents of the essential oils are indicated. In total, 268 compounds were identified by means of GC-FID and GC-MS techniques, which represented 95.6 to 98.6 % of the total essential oil compositions. Samples of the species were gathered in three different Costa Rican locations, showing qualitative similarities, but some major quanti- tative differences. The leaf essential oil obtained from Miramar was dominated by oxygenated sesquiterpenes (64.6 %), with caryophyllene oxide (22.5 %) (Fig. 1), viridiflorol (20.3 %) and spathulenol (8.3 %) as principal components, accompanied by lesser amounts in the 1.5- 3.9 % range, namely α-pinene, β-caryophyllene, cubebol, humulene epoxide II, 1-epi-cubenol, δ-3-carene, ar-curcumene, cis-cadin-4-en-7-ol, β-pinene, and γ-curcumene. The main con- stituents of the leaf essential oil from San Pedro 1316 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 TA B LE 2 Th e ch em ic al c la ss d is tri bu tio n in th e es se nt ia l o ils o f B ac ch ar is tr in er vi s fr om th re e lo ca tio ns in C os ta R ic a C om po un d cl as s M ira m ar Sa n Pe dr o Pa va s Le af % N C Fl ow er % N C Le af % N C B ra nc h % N C Le af % N C Fl ow er % N C B ra nc h % N C A lip ha tic s (A ) t 9 0. 9 28 0. 2 7 0. 6 9 0. 4 9 0. 9 9 0. 5 11 A lc oh ol s t 2 0. 2 2 02 2 0. 1 1 0. 1 2 A ld eh yd es t 5 0. 6 10 t 3 0. 3 8 0. 1 3 0. 5 3 0. 2 4 K et on es t 1 t 2 t 1 A ci ds 0. 3 1 0. 1 1 Es te rs t 1 0. 1 2 1 0. 1 3 0. 1 3 H yd ro ca rb on s t 2 0. 2 12 1 0. 3 5 t 1 Te rp en oi ds 97 .0 10 6 94 .5 96 95 .8 83 97 .8 80 92 .7 91 92 .3 72 94 .9 77 M on ot er pe no id s (M ) 15 .3 51 7. 3 41 20 .7 34 10 .4 24 27 .8 38 5. 6 27 27 .8 25 M on ot er pe ne h yd ro ca rb on s 10 .8 21 5. 5 19 20 .1 19 10 .1 13 24 .7 19 4. 8 16 26 .7 17 O xy ge na te d m on ot er pe ne s 4. 5 30 1. 8 22 0. 6 15 0. 3 11 3. 1 19 0. 9 12 1. 1 8 Se sq ui te rp en oi ds (S ) 81 .7 55 86 .6 52 75 .1 48 87 .4 55 64 .9 52 86 .6 45 67 .1 50 Se sq ui te rp en e hy dr oc ar bo ns 17 .1 32 63 .4 34 64 .3 32 72 .3 35 30 .7 34 47 .4 30 46 .9 30 O xy ge na te d se sq ui te rp en es 64 .6 23 22 .7 17 10 .8 16 15 .1 20 33 .6 17 38 .8 14 20 .1 19 Su lfu r s es qu ite rp en es 0. 5 1 0. 6 1 0. 4 1 0. 1 1 D ite rp en oi ds (D ) 0. 3 2 t 1 0. 4 2 Ir re gu la r t er pe no id s (I T) 0. 3 1 t 1 A ro m at ic s 0. 3 5 0. 1 2 t 3 t 2 t 1 B en ze no id s (B ) 0. 1 4 0. 1 2 t 2 t 2 t 1 t 1 Ph en yl pr op an oi ds (P P) 0. 2 1 t 1 0. 2 1 M is ce lla ne us (M is c) t 1 0. 1 3 0. 2 2 t 1 t 1 1. 0 1 TO TA L 97 .3 12 1 95 .6 12 9 96 .0 92 98 .6 93 93 .1 10 2 93 .4 84 96 .8 90 N C : n um be r o f c om po un ds . t : t ra ce s (˂ 0. 05 % ). 1317Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 were germacrene D (19.1 %), germacrene B (16.0 %), β-caryophyllene (9.1 %), viridiflorol (8.8 %), and δ-3-carene (6.8 %). Other signifi- cant constituents in the 1.3-3.4 % range were δ-cadinene, α-pinene, β-elemene, γ-elemene, β-phellandrene, α-thujene, and β-pinene. The main components of Pavas leaf essential oil were viridiflorol (21.0 %), β-caryophyllene (7.9 %), δ-3-carene (6.6 %), germacrene D (6.3 %), and α-pinene (5.9 %). These com- pounds were accompanied by other significant constituents in the 1.4-3.0 % range, namely β-elemene, spathulenol, limonene, β-pinene, bicyclogermacrene, α-cadinol, caryophyl- lene oxide, α-thujene, sabinene, γ-muurolene, δ-cadinene, and germacrene B. The composition of the flower essential oil obtained from samples collected in the locali- ties of Miramar and Pavas were dominated by sesquiterpenoids (86.6 %) with cis-muu- rola-4(14),5-diene (13.7 %), β-caryophyllene (9.5 %), bicyclogermacrene (8.3 %), and ar- curcumene (8.0 %) as major constituents, accompanied by lesser amounts of several compounds in the 2.2-4.7 % range, name- ly viridiflorol, germacrene D, germacrene B, spathulenol, cis-cadin-4-en-7-ol, γ-cadinene, β-elemene, and humulene or globulol (24.8 %), β-caryophyllene (17.1 %), germacrene D (9.9 %), bicyclogermacrene (5.9 %), spathu- lenol (4.8 %), caryophyllene oxide (4.7 %), and β-elemene (4.3 %). The branch essential oil from San Pedro sample also was con- stituted mainly by sesquiterpenoids (87.4 %) with germacrene B (18.7 %), germacrene D (14.7 %), β-caryophyllene (12.4 %) and globu- lol (11.3 %) as main constituents. There were also lesser amounts of several compounds in the 2.2-4.3 % range, namely δ-cadinene, bicyclogermacrene, β-copaene, β-elemene, and δ-3-carene. The branch essential oil from Pavas sample was constituted mainly by sesquiterpe- noids (67.1 %) with more quantity of mono- terpenoids (27.8 %) than the sample from San Pedro (10.4 %). The main compounds were germacrene D (15.6 %), viridiflorol (11.5 %), β-caryophyllene (10.1 %), δ-3-carene (8.1 %), β-phellandrene (6.5 %), bicyclogermacrene (4.9 %), and δ-cadinene (3.5 %). As can be seen from table 1 and table 2, the major constituents of the leaf essential oil from the sample collected in Miramar were oxygenated sesquiterpenes (64.6 %), whereas sesquiterpene hydrocarbons (64.3 %) were the major components of the San Pedro sample. However, in the sample from Pavas, the two cited classes of metabolites were almost equal- ly distributed (30.7 and 33.6 %, respectively). DISCUSSION The essential oil of fresh aerial parts of Baccharis trinervis, collected on Merouca mountain region of Ceará state, Northeastern Brazil (Albuquerque et al., 2004; Sobrinho et al., 2016), revealed that the major constitu- ents were terpenoids with the presence of β-phellandrene (18.4-27.8 %), sabinene (10.9- 14.2 %), α-thujene (6.6-10.5 %), (Z)-β- ocimene (2.3-8.1 %), α-pinene (5.5-8.7 %), and (E)-β-ocimene (1.9-6.3 %), including two non-terpenoid C-10 ene-diyne esters: methyl (Z)-dec-2-en-4,6-diynoate (0.8-14.6 %) and methyl (E)-dec-2-en-4,6-diynoate (10.7-14.7 %) not found in other oils of Baccharis species studied up to day. Rojas et al. (2008) examined Fig. 1. Chemical structures of some principal sesquiterpenic constituents of Baccharis trinervis essential oil from Costa Rica: a) Spathulenol, b) viridiflorol, c) caryophyllene oxide, d) β-caryophyllene, e) germacrene D, and f) germacrene B. 1318 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 the essential oil from leaves collected on Santa Rosa, La Hechicera, in Mérida State (Venezu- ela). In this study, the authors reported that the major constituents were germacrene D (20.1 %), limonene (15.0 %), δ-cadinene (5.2 %), β-caryophyllene (4.8 %), α-pinene (4.5 %), and bicyclogermacrene (4.0 %), and this oil can be distinguished from the Brazilian ones in the fact that the main C-10 ene-diyne esters were absent. Our experimental data support those obtained by Rojas et al. (2008) because the results of the essential oil samples from the three different locations in Costa Rica do not contain those characteristic and very specific C-10 ene-diyne esters found in the Brazilian botanical material. As an additional support, the phytochemical study realized by Bohlmann and Zdero (1970) of fresh aerial parts of B. trinervis, cultured from seeds -of not specified origin- at Botanical Garden of the University of Berkeley, verified the presence of matricaria ester and three C-17 ene-diyne-diene esters but not C-10 ene-diyne esters (see also, Bohlmann, Burkhardt, & Zdero, 1973). Nonetheless, in a later phytochemical study of nine species of Baccharis collected in Brazil, the aerial parts of B. trinervis afforded, besides several ter- penoids, one compound which has the trivial name lachnophyllum ester (probably, its Z iso- mer) corresponding to methyl dec-2-en-4,6-di- ynoate (Bohlmann et al., 1981). This was the first diacetylenic compound with established chemical constitution isolated from an essential oil (Sørensen, 1977). This significant variation in the qualitative composition of the essential oils of the same species collected in Venezuela and Costa Rica compared with the Brazilian samples could be caused by the habitat and environment factors as well as the genotype of the plant, but real sources of variability, according to Németh-Zámboriné (2016), are ‘hard to determine’. Furthermore, it is known that Baccharis is a diverse and complex genus of the Asteraceae because some of the species present a high degree of morphological and chemical variability. One of the distinguish- ing factors of the oils from this plant growing wild in Costa Rica is the presence of an array of terpenoids with diverse carbon skeletons that could arise through various biosynthetic patterns. Especially important in number are the cadinane class and the guaiane family of sesquiterpenoids that are originated from the germacrane biosynthetic pathway. A distinctive character of the oils of B. trinervis studied from Costa Rica is the presence of the oxygenated sesquiterpenoids spathulenol, viridiflorol and globulol, in important amounts, accompanied by lesser quantities of several compounds of the same carbon skeleton, that are not found in the Venezuelan sample nor in the oils of Brazilian botanical material. These compounds also were found in B. articulata (Lam.) Pers. (Minteguiaga et al., 2015), B. caprariifolia DC. (Ferracini et al., 1995), B. crispa Spreng. (Simões-Pires et al., 2005), B. dracunculifolia DC. (Frizzo et al., 2008; Fabiane, Ferronatto, dos Santos, & Onofre, 2008), B. erioclada DC. (Ferracini et al., 1995), B. platipoda DC. (Ferracini et al., 1995; Quiroga, Ferracini, & Marsaioli, 1996), B. semiserrata DC. (Van- nini et al., 2012), B. tridentata Vahl (Ferracini et al., 1995; Quiroga et al., 1996), B. trimera (Less.) DC. (Silva et al., 2007; Oliveira et al., 2012), B. uncinella (Fabiane et al., 2008), and B. vincaefolia Baker (Ferracini et al., 1995). Spathulenol appear to be a widespread com- pound in the essential oils from plants of the genus Baccharis. Our findings corroborate the presence of 41 compounds previously reported (Albuquerque et al., 2004; Sobrinho et al., 2016; Rojas et al., 2008) indicated by asterisks and bullets in table 1, whereas 227 constituents are newly reported in the composition of oils from Baccharis trinervis. The aerial parts of Baccharis trinervis growing wild in Costa Rica produce terpe- noid-rich essential oils whose compositions were dominated by either globulol (0-24.8 %), caryophyllene oxide (0.1-22.5 %), viridiflorol (0-21.0 %), germacrene D (0.5-19.1 %), ger- macrene B (0.2-18.7 %), β-caryophyllene (3.5- 17.1 %), cis-muurola-4(14),5-diene (0-13.7 %), bicyclogermacrene (0-8.3 %), spathulenol (0.1- 8.3 %), ar-curcumene (0-8.0 %), δ-3-carene (0.9-6.8 %), or α-pinene (0.3-5.9 %), according 1319Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 to the morphological part studied or the locality of collection of the sample. The composition of the essential oils of B. trinervis from central Costa Rica is qualitatively different to the com- position of the oils from samples of the same species collected in the state of Ceará, Brazil, which contain two characteristic stereoisomeric lachnophyllum esters, compounds not detected in this study. The essential oils of plants from Costa Rica resemble the composition of the oil from Venezuelan origin, but differ from both Brazilian and Venezuelan essential oils by the presence of sesquiterpenoids of the guaiane carbon skeleton, some of them as prominent members: viridiflorol, globulol, and spathulenol. ACKNOWLEDGMENTS The authors are grateful to Escuela de Química and Vicerrectoría de Investigación (UCR) for financial support (Project No. 809- B1-190) and to C. O. Morales (Biology School, UCR) for the species identification. RESUMEN Constituyentes de los aceites esenciales de Baccha- ris trinervis (Asteraceae) de Costa Rica. Baccharis (Aste- raceae) es un género de plantas con flor que consta de 340 a 400 especies que habitan desde el sur de EE. UU. hasta Argentina y Chile, incluyendo América Central y varias islas del Caribe. Baccharis trinervis es un arbusto nativo de México, América Central y América del Sur. En Costa Rica, esta especie se conoce popularmente como alcotán y las hojas frescas se utilizan en forma de cataplasma para curar heridas y úlceras. El objetivo del presente estudio fue el de identificar los constituyentes químicos de los aceites esenciales obtenidos de diferentes partes morfológicas de B. trinervis en tres localidades de Costa Rica, obtenidos mediante el método de hidrodestilación. Se analizó la composición química de los aceites por cromatografía capilar de gases con detector de ionización de flama (GC- FID) y cromatografía de gases acoplada a un detector de masas (GC-MS), utilizando los índices de retención en una columna tipo DB-5 y los patrones de fragmentación, lo cual permitió la identificación de 268 constituyentes. Los siete aceites están constituidos principalmente por terpenoides (92.3 a 97.8 %). Los compuestos mayoritarios de los aceites de las hojas se identificaron como óxido de cario- fileno (0.1-22.5 %), viridiflorol (8.8-21.0 %), germacreno D (0.5-19.1 %), germacreno B (0.2-16.0 %), β-cariofileno (3.5-9.1 %), espatulenol (0.1-8.3 %), δ-3-careno (2.0- 6.8 %), α-pineno (2.5-5.9 %), biciclogermacreno (0-4.4 %), δ-cadineno (0.8-3.4 %), β-elemeno (0.8-3.0 %), limoneno (0.9-2.9 %) y β-pineno (1.3-2.5 %). Los aceites de las flores contienen principalmente globulol (0-24 %), β-cariofileno (9.5-17.1 %), cis-muurola-4(14),5-dieno (t-13.7 %), ger- macreno D (4.3-9.9 %), biciclogermacreno (5.9-8.3 %), ar-curcumeno (0-8.0 %), espatulenol (4.3-4.8 %), óxido de cariofileno (3.1-4.7 %), viridiflorol (0.3-4.7 %), β-elemeno (2.5-4.3 %), germacreno B (1.8-4.3 %), γ-cadineno (0.3- 2.5 %), δ-3-careno (0.9-2.2 %) y α-humuleno (1.8-2.2 %). Los constituyentes mayoritarios del aceite de las rami- tas fueron: germacreno B (1.4-18.7 %), germacreno D (14.7-15.6 %), β-cariofileno (10.1-12.4 %), viridiflorol (0-11.5 %), globulol (0.6-11.3 %), δ-3-careno (4.1-8.1 %), β-felandreno (1.5-6.5 %), biciclogermacreno (3.6-4.9 %), δ-cadineno (3.5-4.3 %), β-copaeno (0.6-2.8 %), β-elemeno (1.3-2.7 %) y γ- muuroleno (1.6-2.6 %). Los aceites estu- diados presentan una composición compleja y se diferen- cian de los aceites obtenidos de la misma especie que crece en Brasil por la ausencia de los compuestos isoméricos diacetilénicos dec-2-en-4,6-diinoato de metilo (Z y E). También se diferencian de los aceites de las plantas de Brasil y Venezuela por la presencia de sesquiterpenoides de la familia de los guayanos, en especial por cantidades apreciables de viridiflorol, globulol y espatulenol. Palabras clave: Baccharis trinervis, Asteraceae, aceites esenciales, terpenoides, GC-MS, Costa Rica. REFERENCES Abad, M. J., Bermejo, P., Sánchez-Palomino, S., Chiribo- ga, X., & Carrasco, L. (1999). Antiviral activity of some South American medicinal plants. Phytothera- py Research, 13, 142-146. Abad, M. J., & Bermejo, P. (2007). Baccharis (Composi- tae): a review update. ARKIVOC, Part (vii), 76-96. Adams R. P. (2007). Identification of Essential Oil Com- ponents by Gas Chromatography / Mass Spec- trometry (4th ed). Carol Stream, Illinois: Allured Publishing Corporation. Ali, N. A. A., Wurster, M., Arnold, N., Teichert, A., Sch- midt, J., Lindequist, U., & Wessjohann, L. (2008). Chemical composition and biological activities of essential oils from the oleogum resins of three ende- mic soqotraen Boswellia species. Records of Natural Products, 2(1), 6-12. Albuquerque, M. R. J. R., Souza, E. B., Lins, M. U. D. S., Nogueira, N. A. P., Lemos, T. L. G., Silveira, E. R., & Pessoa, O. D. L. (2004). Composition and antimicrobial activity of the essential oil from aerial parts of Baccharis trinervis (Lam.) Pers. ARKIVOC, Part (vi), 59-65. 1320 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 Bohlmann, F., & Zdero, C. (1970). Polyacetylenverbindun- gen. 179. Über die Inhaltsstoffe von Baccharis tri- nervis Pers. Chemische Berichte, 103(8), 2327-2329. Bohlmann, F., Burkhardt, T., & Zdero, C. (1973). Natu- rally occurring acetylenes (pp. 215-217). London: Academic Press. Bohlmann, F., Kramp, W., Grenz, M., Robinson, H., & King, R. M. (1981). Diterpenes from Baccharis spe- cies. Phytochemistry, 20(8), 1907-1913. Ferracini, V. L., Paraiba, L. C., Leitao Filho, H. F., da Silva, A. G., Nascimento, L. R., & Marsaioli, A. J. (1995). Essential oils of seven Brazilian Baccharis species. Journal of Essential Oil Research, 7(4), 355-67. Fabiane, K. C., Ferronatto, R., dos Santos, A. C., & Onofre, S. B. (2008). Physicochemical characteristics of the essential oils of Baccharis dracunculifolia and Bac- charis uncinella DC. (Asteraceae). Revista Brasileira de Farmacognosia, 18(2), 197-203. Flamini, G., Cioni, P. L, Morelli, I., Ceccarini L., Andolfi, L., & Macchia, M. (2003). Composition of the essen- tial oil of Medicago marina L. from the coastal dunes of Tuscany, Italy. Flavour and Fragrance Journal, 18, 460-462. Frizzo, C. D., Atti-Serafini, L., Laguna, S. E., Cassel, E., Lorenzo, D., & Dellacassa, E. (2008). Essential oil variability in Baccharis uncinella DC and Baccharis dracunculifolia DC growing wild in southern Brazil, Bolivia and Uruguay. Flavour and Fragrance Jour- nal, 23(2), 99-106. Heiden, G., Andrade-Baumgratz, J. F., & Esteves, R. L. (2012). Baccharis subgen. Molina (Asteraceae) no estado do Rio de Janeiro, Brasil. Rodriguésia, 63(3), 649-687. Heras, B., Slowing, K., Benedí, J., Carretero, E., Ortega, T., Toledo, C., Bermejo, P., …, & Villar, A. (1998). Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. Journal of Ethnopharmacology, 61, 161-166. Herrera, J. C., Rosas-Romero, A. J., Crescente, O. E., Acosta, M., & Pekerar, S. (1996). Analysis of 5-hydroxy-7-methoxyflavones by normal-phase high-performance liquid chromatography. Journal of Chromatography A, 740, 201-206. House, P. R., Lagos-Witte, S., Ochoa, L., Torres, C., Mejía, T., & Rivas, M. (1995). Plantas medicinales comunes de Honduras (pp. 50-51). Tegucigalpa, Honduras: UNAH, CIMN-H, CID/CIIR, GTZ. Jordan, M. J., Margaria, C. C., Shaw, P. E., & Goodner, K. L. (2002). Aroma active components in aqueous Kiwi fruit essence and Kiwi fruit puree by GC-MS and multidimensional GC/GC-O. Journal of Agricultural and Food Chemistry, 50, 5386-5390. Kuroyanagi, M., Uchida, K., Ueno, A., Satake, M., & Shimomura, K. (1993). Neo-clerodane type diter- penes from Baccharis trinervis. Phytochemistry, 34(5), 1377-1384. León, J., & Poveda, L. J. (2000). In P. E. Sánchez-Vindas (Ed.), Nombres comunes de las plantas en Costa Rica (pp. 48). San José, Costa Rica: Editorial Guayacán. Minteguiaga, M., Umpiérrez, N., Fariña, L., Falcão, M. A., Xavier, V. B., Cassel, E., & Dellacassa, E. (2015). Impact of gas chromatography and mass spectrometry combined with gas chromatography and olfactometry for the sex differentiation of Baccharis articulata by the analysis of volatile compounds. Journal of Separation Science, 38(17), 2931-3118. Németh-Zámboriné, E. (2016). Natural variability of essential oil components. In K. H. C. Başir, & G. Buchbauer (Eds.). Handbook of essential oils: Scien- ce, technology, and applications (pp. 87-125). Boca Raton, FL: CRC Press/Taylor & Francis. Núñez-Meléndez, E. (1978). Plantas medicinales de Costa Rica y su folklore. San José, Costa Rica: Editorial Universidad de Costa Rica. Oliveira, R. N., Rehder, V. L., Oliveira, A. S. S., Júnior, I. M., de Carvalho, J. E., de Ruiz, A. L. T., Jeraldo, V. L. S., Linhares, A. X., & Allegretti, S. M. (2012). Schistosoma mansoni: In vitro schistosomicidal acti- vity of essential oil of Baccharis trimera (Less.) DC. Experimental Parasitology, 132, 135-143. Pittier, H. (1978). Plantas usuales de Costa Rica (reprint of 2nd ed., 1957). San José, Costa Rica: Editorial Costa Rica. Quiroga, C. L., Ferracini, V. L., & Marsaioli, A. J. (1996). Three new oxigenated cadinanes from Baccharis Species. Phytochemistry, 42(4), 1097-1103. Radulovic, N. S., Dordevic, N. D., & Palic, R. (2010). Volatile of Pleurospermim austriacum (L.) Hoffm. (Apiaceae). Journal of Serbian Chemical Society, 75(12), 1-11. Ramírez-Cárdenas, A., Isaza-Mejía, G. & Pérez-Cárdenas, J. E. (2013). Especies vegetales investigadas por sus propiedades antimicrobianas, inmunomoduladoras e hipoglicemientes en el Departamento de Caldas (Colombia, Sudamérica). Biosalud, 12(1), 59-82. Ramos Campos, F., Bressan, J., Godoy Jasinski, V. C., Zuccolotto, T., da Silva, L. E., & Bonancio Cer- queira, L. (2016). Baccharis (Asteraceae): Chemical constituents and biological activities. Chemistry and Biodiversity, 13, 1-17. Rojas, J., Velasco, J., Morales, A., Rojas, L., Díaz, T., Rondón, M., & Carmona, J. (2008). Chemical com- position and antibacterial activity of the essential oil of Baccharis trinervis (Lam.) Pers. (Asteraceae) 1321Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (4): 1307-1321, December 2017 collected in Venezuela. Natural Product Communi- cations, 3(3), 369-372. Sánchez-Palomino, S., Abad, M. J., Bedoya, L. M., García, J., Gonzales, E., Chiriboga, X., Bermejo, P., & Alca- mi, J. (2002). Screening of South American plants against human immunodeficiency virus: Preliminary fractionation of aqueous extract from Baccharis trinervis. Biological and Pharmaceutical Bulletin, 25, 1147-1150. Sharp, H., Bartholomew, B., Bright, C., Latif, Z., Sarker, S. D., & Nash, R. J. (2001). 6-Oxygenated flavones from Baccharis trinervis (Asteraceae). Biochemical Systematics and Ecology, 29, 105-107. Silva, F. G., Oliveira, C. B. A., Pinto, J. E. B. P., Nascimen- to, V. E., Santos, S. C., Seraphin, J. C., & Ferri, P. H. (2007). Seasonal variability in the essential oils of wild and cultivated Baccharis trimera. Journal of the Brazilian Chemical Society, 18(5), 990-997. Simões-Pires, C. A., Debenedetti, S., Spegazzini, E., Mentz, L. A., Matzenbacher, N. I., Limberger, R. P., & Henriques, A. T. (2005). Investigation of the essential oil from eight species of Baccharis belon- ging to sect. Caulopterae (Asteraceae, Astereae): a taxonomic approach. Plant Systematics and Evolu- tion, 253, 23-32. Sobrinho, C. A. N., Souza, E. B., Rocha, M. F. G., Albu- querque, M. R. J. R., Bandeira, P. N., Santos, H. S., Cavalcante, C. S. P., …, & Fontenelle, R. O. S. (2016). Chemical composition, antioxidant, anti- fungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Indus- trial Crops and Products, 84,108-115. http://dx.doi. org/10.1016/j.indcrop.2016.01.051 Sørensen, N. A. (1977). Polyacetylenes and conservatism of chemical characters in the Compositae. In V. H. Heywood, J. B. Harborne, & B. L. Turner (Eds.). The biology and chemistry of the Compositae (Vol. 1, pp. 385-409). London: Academic Press. van den Dool, H. & Kratz, P. D. (1963). A generalization of the retention index system including linear tem- perature programmed gas-liquid partition chromato- graphy. Journal of Chromatography A, 11, 463-471. Vannini, A. B., Santos, T. G., Fleming, A. C., Purnhagen, L. R. P., Lourenco, L. A., Butzke, E. T. B., Kempt, M., …, & Steindel, M. (2012). Chemical characterization and antimicrobial evaluation of the essential oils from Baccharis uncinella D.C. and Baccharis semiserrata D.C. (Asteraceae). Journal of Essential Oil Research, 24(6), 547-554. Verdi, L. G, Brighente, I. M. C., & Pizzolatti, M. G. (2005). Gênero Baccharis (Asteraceae): aspec- tos químicos, económicos e biológicos. Quími- ca Nova, 28(1), 85-94. http://dx.doi.org/10.1590/ S0100-40422005000100017 Zoghbi, M. G. B., Andrade, E. H. A., Santos, A. S., Silva, M. H. L., & Maia, J. G. S. (1998). Essential oils of Lippia alba (Mills.) N. E. Br. growing in the Bra- zilian Amazon. Flavour and Fragrance Journal, 13(1), 47-48.