electronic reprint ISSN: 2414-3146 iucrdata.iucr.org/x N-[3-(Prop-1-yn-1-yl)phenyl]benzenesulfonamide Leslie W. Pineda and Jorge A. Cabezas IUCrData (2019). 4, x191176 IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/4.0/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. IUCrData (2019). 4, x191176 Pineda and Cabezas · C15H13NO2S http://journals.iucr.org/x/ https://doi.org/10.1107/S2414314619011763 http://creativecommons.org/licenses/by/4.0/legalcode http://crossmark.crossref.org/dialog/?doi=10.1107/S2414314619011763&domain=pdf&date_stamp=2019-09-03 data reports IUCrData (2019). 4, x191176 https://doi.org/10.1107/S2414314619011763 1 of 3 N-[3-(Prop-1-yn-1-yl)phenyl]benzenesulfonamide Leslie W. Pinedaa,b and Jorge A. Cabezasa* aEscuela de Quı́mica, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and bCentro de Electroquı́mica y Energı́a Quı́mica (CELEQ), Universidad de Costa Rica, 11501-2060, San José, Costa Rica. *Correspondence e-mail: jorge.cabezas@ucr.ac.cr In the title sulfanilamide derivative, C15H13NO2S, which shows significant activity against Staphylococcus aureus and Escherichia coli, the dihedral angle between the planes of the aromatic rings is 62.15 (19)� and the four-coordinate S atom adopts an almost ideal tetrahedral geometry. In the crystal, N—H� � �O and C—H� � �O hydrogen bonds link the molecules into a three-dimensional network. Structure description In 1932, a drug called Prontosil was discovered by the pharmaceutical division of IG Farbenindustrie, an industrial conglomerate of German companies, including Bayer Company. It was found to be very successful treating several diseases in humans, provoked by Staphylococcus and Streptococcus. Prontosil was the first antibacterial drug, with life-saving capability, to be used systematically for the treatment of bacterial infections in the body. It belongs to a family of compounds called sulfa drugs or sulfo- namides. In the 1940s and 1950s, most of the sulfa drugs were replaced by penicillin and other drugs, which proved to be more effective against more types of bacteria. However, nowadays, some sulfa drugs such as sulfamethoxazole, in combination with trimethoprim (co-trimoxazole), are still used extensively to inhibit the growth of bacteria that produce opportunistic infections in patients with AIDS, and bacterial infections such as pneu- monia, bronchitis and infections of the urinary tract, ears and intestines (Brumfitt & Hamilton-Miller, 1993). As part of our studies in this area we now report the synthesis of of the title sulfani- lamide derivative, 1, and its crystal structure. This compound, has been found to be very effective against Staphylococcus aureus and Escherichia coli, and minimal inhibitory concentrations (MIC) of 12.5 mg ml�1 and 25.0 mg ml�1 have been obtained respectively (Cabezas & Arias, 2019). Received 30 July 2019 Accepted 26 August 2019 Edited by W. T. A. Harrison, University of Aberdeen, Scotland Keywords: crystal structure; antibacterial activity; N—H� � �O hydrogen bonding; propyne substituent; sulfonamide. CCDC reference: 1887179 Structural data: full structural data are available from iucrdata.iucr.org ISSN 2414-3146 electronic reprint 2 of 3 Pineda and Cabezas � C15H13NO2S IUCrData (2019). 4, x191176 data reports The crystal structure of 1 has monoclinic symmetry with one molecule in the asymmetric unit: the molecular structure consists of a benzenesulfonamide fragment bound to a benzene ring bearing in its 3-position a propyne substituent (Fig. 1): the dihedral angle between the C1–C6 and C10–C15 benzene rings is 62.15 (19)�. The length of the carbon–carbon triple bond (C7 C8) is 1.181 (5) Å, with the C7—C8—C9 and C8—C7—C1 angles being 178.8 (4) and 178.1 (4)�, respec- tively, which are slightly distorted from the expected linear geometry. The calculation of the angular structural index (�4 = 0.94; and �4’ = 0.90) for the four-coordinate S1 atom, which binds to O1, O2, N1 and C10 from the benzene ring (Yang et al., 2007; Okuniewski et al., 2015; Rosiak et al., 2018) indicates that it adopts an almost ideal tetrahedral geometry (�4 = 0 for an ideal square and 1 for an ideal tetrahedron). In the extended structure of 1, weak N1—H1� � �O2, C4—H4� � �O1 and C6—H6� � �O1 hydrogen bonds are observed (Table 1, Fig. 2), leading to the formation of a three-dimensional network. Table 1 Hydrogen-bond geometry (Å, �). D—H� � �A D—H H� � �A D� � �A D—H� � �A N1—H1� � �O2i 0.88 2.55 2.984 (4) 111 C4—H4� � �O1ii 0.95 2.45 3.256 (4) 143 C6—H6� � �O1 0.95 2.39 2.955 (4) 118 Symmetry codes: (i) x;�y þ 1; zþ 1 2; (ii) x; y; z þ 1. Figure 2 Part of an [001] hydrogen-bonded chain with N—H� � �O2, C—H� � �O1 hydrogen bonds shown as green lines. Figure 3 A synthetic scheme for the preparation of the title compound. Figure 1 The title molecule with 50% probability ellipsoids. Table 2 Experimental details. Crystal data Chemical formula C15H13NO2S Mr 271.32 Crystal system, space group Monoclinic, Cc Temperature (K) 100 a, b, c (Å) 8.4596 (4), 24.9769 (13), 7.1310 (4) � (�) 117.557 (2) V (Å3) 1335.80 (12) Z 4 Radiation type Mo K� � (mm�1) 0.24 Crystal size (mm) 0.35 � 0.20 � 0.15 Data collection Diffractometer Bruker D8 Venture CCD Absorption correction Multi-scan (SADABS; Bruker, 2015) Tmin, Tmax 0.704, 0.746 No. of measured, independent and observed [I > 2�(I)] reflections 9630, 3028, 2716 Rint 0.037 (sin �/�)max (Å�1) 0.649 Refinement R[F 2 > 2�(F 2)], wR(F 2), S 0.042, 0.089, 1.03 No. of reflections 3028 No. of parameters 173 No. of restraints 2 H-atom treatment H-atom parameters constrained � max, � min (e Å�3) 0.39, �0.47 Absolute structure Flack x determined using 1163 quotients [(I+)�(I�)]/[(I+)+(I�)] (Parsons et al., 2013) Absolute structure parameter 0.02 (3) Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010). electronic reprint data reports IUCrData (2019). 4, x191176 Pineda and Cabezas � C15H13NO2S 3 of 3 Synthesis and crystallization The title compound, 1, was synthesized by treatment of 3- iodoaniline, 2, with benzenesulfonyl chloride, 3, in the presence of pyridine, at room temperature to obtain, after purification by column chromatography (ether:hexane, 40:60), iodosulfonamide, 4, in 75% yield. This aromatic iodide 4, was treated with propyne, under Sonogashira’s reaction conditions (Sonogashira et al., 1975), using CuI and (Ph3P)2PdCl2 as catalysts, (Fig. 3). After purification by column chromato- graphy, using a solvent mixture of hexane:ethyl acetate (75:25), compound 1 was isolated in 70% yield, and with an overall yield of 53%. The product was recrystallized from ethyl acetate solution at room temperature to result in light- yellow blocks of the title compound. Refinement Crystal data, data collection and structure refinement are summarized in Table 2. Acknowledgements CELEQ is thanked for supplying liquid nitrogen for the X-ray measurements. Funding information Funding for this research was provided by: Vicerrectorı́a de Investigación, Universidad de Costa Rica (UCR); Escuela de Quı́mica (UCR). References Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Brumfitt, W. & Hamilton-Miller, J. M. (1993). J. Chemother. 5, 465– 469. Cabezas, J. A. & Arias, M. L. (2019). Int. J. Curr. Res, 11, 5224–5227. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955– 964. electronic reprint data reports data-1IUCrData (2019). 4, x191176 full crystallographic data IUCrData (2019). 4, x191176 [https://doi.org/10.1107/S2414314619011763] N-[3-(Prop-1-yn-1-yl)phenyl]benzenesulfonamide Leslie W. Pineda and Jorge A. Cabezas N-[3-(Prop-1-yn-1-yl)phenyl]benzenesulfonamide Crystal data C15H13NO2S Mr = 271.32 Monoclinic, Cc a = 8.4596 (4) Å b = 24.9769 (13) Å c = 7.1310 (4) Å β = 117.557 (2)° V = 1335.80 (12) Å3 Z = 4 F(000) = 568 Dx = 1.349 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4995 reflections θ = 2.8–27.5° µ = 0.24 mm−1 T = 100 K Block, clear light yellow 0.35 × 0.20 × 0.15 mm Data collection Bruker D8 Venture CCD diffractometer Radiation source: Incoatec Microsource Mirrors monochromator Detector resolution: 10.4167 pixels mm-1 ω scans Absorption correction: multi-scan (SADABS; Bruker, 2015) Tmin = 0.704, Tmax = 0.746 9630 measured reflections 3028 independent reflections 2716 reflections with I > 2σ(I) Rint = 0.037 θmax = 27.5°, θmin = 2.8° h = −10→10 k = −32→32 l = −9→9 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.042 wR(F2) = 0.089 S = 1.03 3028 reflections 173 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo 2) + (0.0401P)2 + 1.2876P] where P = (Fo 2 + 2Fc 2)/3 (Δ/σ)max < 0.001 Δρmax = 0.39 e Å−3 Δρmin = −0.47 e Å−3 Absolute structure: Flack x determined using 1163 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) Absolute structure parameter: 0.02 (3) electronic reprint data reports data-2IUCrData (2019). 4, x191176 Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. All hydrogen atoms were placed geometrically and refined using a riding-atom model approximation, with C—H = 0.95–1.00 Å, with Uiso(H) = 1.2Ueq(C). A rotating group model was used for the methyl groups. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z Uiso*/Ueq S1 0.73168 (11) 0.55417 (3) 0.33500 (12) 0.01205 (19) O1 0.7499 (3) 0.58926 (10) 0.1883 (4) 0.0159 (5) O2 0.7908 (3) 0.49971 (10) 0.3513 (4) 0.0171 (6) N1 0.8464 (4) 0.57903 (11) 0.5727 (4) 0.0138 (6) H1 0.9279 0.5593 0.6732 0.017* C1 0.7946 (5) 0.72772 (15) 0.5484 (6) 0.0188 (8) C2 0.7594 (6) 0.73618 (15) 0.7189 (6) 0.0243 (9) H2 0.7403 0.7715 0.7534 0.029* C3 0.7522 (6) 0.69340 (15) 0.8383 (8) 0.0267 (9) H3 0.7297 0.6994 0.9553 0.032* C4 0.7781 (5) 0.64153 (15) 0.7865 (6) 0.0176 (8) H4 0.7705 0.612 0.8661 0.021* C5 0.8149 (4) 0.63297 (13) 0.6184 (5) 0.0134 (7) C6 0.8256 (5) 0.67587 (14) 0.5006 (5) 0.0156 (7) H6 0.8538 0.6699 0.388 0.019* C7 0.7989 (5) 0.77163 (15) 0.4189 (6) 0.0216 (9) C8 0.7988 (5) 0.80679 (16) 0.3081 (6) 0.0232 (9) C9 0.7969 (7) 0.85150 (17) 0.1717 (8) 0.0345 (11) H9A 0.8463 0.8393 0.0788 0.052* H9B 0.8692 0.8811 0.26 0.052* H9C 0.6741 0.8637 0.0855 0.052* C10 0.5068 (4) 0.55427 (14) 0.2802 (5) 0.0138 (7) C11 0.4331 (5) 0.50847 (14) 0.3182 (5) 0.0159 (7) H11 0.5029 0.477 0.3718 0.019* C12 0.2569 (5) 0.50936 (17) 0.2771 (6) 0.0207 (8) H12 0.205 0.4782 0.3023 0.025* C13 0.1549 (5) 0.55524 (16) 0.1993 (6) 0.0202 (8) H13 0.0343 0.5557 0.1737 0.024* C14 0.2302 (5) 0.60067 (15) 0.1587 (6) 0.0215 (8) H14 0.1597 0.6319 0.1025 0.026* C15 0.4069 (5) 0.60055 (14) 0.1997 (6) 0.0168 (7) H15 0.4588 0.6315 0.1733 0.02* Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 S1 0.0130 (4) 0.0114 (4) 0.0127 (4) 0.0013 (4) 0.0067 (3) −0.0001 (4) electronic reprint data reports data-3IUCrData (2019). 4, x191176 O1 0.0207 (14) 0.0150 (12) 0.0146 (12) 0.0001 (10) 0.0103 (11) 0.0000 (10) O2 0.0190 (13) 0.0147 (12) 0.0183 (13) 0.0030 (10) 0.0094 (11) −0.0010 (10) N1 0.0139 (15) 0.0131 (14) 0.0117 (14) 0.0025 (12) 0.0035 (12) 0.0011 (11) C1 0.0196 (19) 0.0142 (17) 0.0189 (19) −0.0017 (15) 0.0057 (15) 0.0006 (15) C2 0.037 (2) 0.0141 (19) 0.022 (2) 0.0016 (17) 0.0139 (19) −0.0035 (16) C3 0.040 (3) 0.0230 (19) 0.0225 (19) 0.001 (2) 0.0188 (19) −0.002 (2) C4 0.0222 (19) 0.0162 (18) 0.0174 (18) −0.0003 (15) 0.0119 (16) 0.0039 (15) C5 0.0119 (17) 0.0106 (17) 0.0132 (17) −0.0002 (13) 0.0019 (14) −0.0016 (13) C6 0.0148 (17) 0.0169 (18) 0.0140 (17) −0.0019 (14) 0.0058 (14) −0.0005 (14) C7 0.026 (2) 0.0125 (19) 0.025 (2) −0.0011 (16) 0.0105 (17) −0.0060 (16) C8 0.028 (2) 0.017 (2) 0.025 (2) −0.0021 (17) 0.0128 (19) −0.0025 (18) C9 0.043 (3) 0.024 (2) 0.039 (3) 0.001 (2) 0.021 (2) 0.011 (2) C10 0.0132 (15) 0.0171 (17) 0.0110 (16) 0.0015 (15) 0.0054 (14) −0.0030 (14) C11 0.0180 (18) 0.0158 (18) 0.0129 (16) −0.0009 (15) 0.0062 (14) 0.0010 (14) C12 0.0190 (19) 0.028 (2) 0.0158 (18) −0.0072 (16) 0.0088 (15) 0.0017 (16) C13 0.0142 (18) 0.030 (2) 0.0172 (18) −0.0017 (17) 0.0078 (15) −0.0075 (17) C14 0.0182 (19) 0.019 (2) 0.022 (2) 0.0015 (16) 0.0046 (16) −0.0051 (16) C15 0.0194 (19) 0.0125 (17) 0.0168 (17) −0.0014 (14) 0.0069 (15) −0.0034 (14) Geometric parameters (Å, º) S1—O1 1.427 (3) C7—C8 1.181 (5) S1—O2 1.435 (3) C8—C9 1.477 (5) S1—N1 1.636 (3) C9—H9A 0.98 S1—C10 1.756 (3) C9—H9B 0.98 N1—C5 1.440 (4) C9—H9C 0.98 N1—H1 0.88 C10—C11 1.388 (5) C1—C6 1.394 (5) C10—C15 1.390 (5) C1—C2 1.396 (6) C11—C12 1.380 (5) C1—C7 1.445 (5) C11—H11 0.95 C2—C3 1.385 (6) C12—C13 1.387 (6) C2—H2 0.95 C12—H12 0.95 C3—C4 1.392 (5) C13—C14 1.395 (5) C3—H3 0.95 C13—H13 0.95 C4—C5 1.387 (5) C14—C15 1.384 (5) C4—H4 0.95 C14—H14 0.95 C5—C6 1.390 (5) C15—H15 0.95 C6—H6 0.95 O1—S1—O2 119.34 (15) C8—C7—C1 178.1 (4) O1—S1—N1 108.24 (15) C7—C8—C9 178.8 (4) O2—S1—N1 104.96 (15) C8—C9—H9A 109.5 O1—S1—C10 108.01 (16) C8—C9—H9B 109.5 O2—S1—C10 108.67 (16) H9A—C9—H9B 109.5 N1—S1—C10 107.00 (15) C8—C9—H9C 109.5 C5—N1—S1 120.4 (2) H9A—C9—H9C 109.5 C5—N1—H1 119.8 H9B—C9—H9C 109.5 S1—N1—H1 119.8 C11—C10—C15 121.6 (3) electronic reprint data reports data-4IUCrData (2019). 4, x191176 C6—C1—C2 119.5 (3) C11—C10—S1 119.6 (3) C6—C1—C7 119.1 (3) C15—C10—S1 118.8 (3) C2—C1—C7 121.4 (3) C12—C11—C10 118.9 (3) C3—C2—C1 120.4 (4) C12—C11—H11 120.5 C3—C2—H2 119.8 C10—C11—H11 120.5 C1—C2—H2 119.8 C11—C12—C13 120.6 (4) C2—C3—C4 119.9 (4) C11—C12—H12 119.7 C2—C3—H3 120.1 C13—C12—H12 119.7 C4—C3—H3 120.1 C12—C13—C14 119.7 (3) C5—C4—C3 119.9 (4) C12—C13—H13 120.1 C5—C4—H4 120.1 C14—C13—H13 120.1 C3—C4—H4 120.1 C15—C14—C13 120.4 (4) C4—C5—C6 120.4 (3) C15—C14—H14 119.8 C4—C5—N1 118.6 (3) C13—C14—H14 119.8 C6—C5—N1 120.9 (3) C14—C15—C10 118.7 (3) C5—C6—C1 119.8 (3) C14—C15—H15 120.7 C5—C6—H6 120.1 C10—C15—H15 120.7 C1—C6—H6 120.1 O1—S1—N1—C5 54.7 (3) O1—S1—C10—C11 148.8 (3) O2—S1—N1—C5 −176.8 (3) O2—S1—C10—C11 18.0 (3) C10—S1—N1—C5 −61.5 (3) N1—S1—C10—C11 −94.9 (3) C6—C1—C2—C3 −1.1 (6) O1—S1—C10—C15 −31.3 (3) C7—C1—C2—C3 178.6 (4) O2—S1—C10—C15 −162.1 (3) C1—C2—C3—C4 −0.8 (6) N1—S1—C10—C15 85.0 (3) C2—C3—C4—C5 1.4 (6) C15—C10—C11—C12 −0.7 (5) C3—C4—C5—C6 −0.2 (5) S1—C10—C11—C12 179.1 (3) C3—C4—C5—N1 178.1 (4) C10—C11—C12—C13 −0.1 (5) S1—N1—C5—C4 126.3 (3) C11—C12—C13—C14 1.1 (6) S1—N1—C5—C6 −55.4 (4) C12—C13—C14—C15 −1.3 (6) C4—C5—C6—C1 −1.6 (5) C13—C14—C15—C10 0.5 (5) N1—C5—C6—C1 −179.9 (3) C11—C10—C15—C14 0.5 (5) C2—C1—C6—C5 2.3 (5) S1—C10—C15—C14 −179.3 (3) C7—C1—C6—C5 −177.5 (3) Hydrogen-bond geometry (Å, º) D—H···A D—H H···A D···A D—H···A N1—H1···O2i 0.88 2.55 2.984 (4) 111 C4—H4···O1ii 0.95 2.45 3.256 (4) 143 C6—H6···O1 0.95 2.39 2.955 (4) 118 Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, y, z+1. electronic reprint